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The frist of many

These notes contain my solutions of the exercises and the examples provided in the book “Quantum Stochastic
Thermodynamics: Foundations and Selected Applications” by Philip Strasberg.

I chose the names of examples and exercises to give an approximate idea of what they are about. Additionally,
I changed the formualtion of most exercises to make them easier to understand without the whole book. Note
that, while I tried to be as precise and complete as possible in the formulation of the exercises, in the solutions
I often drop arguments or indices because they should be clear from the context.

Additionally, in some exercise some numerics were required. I included the codes, written in python or
matlab, and the figures generated with them.
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1 Quantum Stochastic Processes

Example 1.1: Evolution of an open quantum system

Consider n spins coupled with random strengths g;; € [0, Q] evolving according to the Hamiltonian

Hiot = Z 50,(;) + Z %US)U&J)‘

i=1 i<j

Let’s separate the spins into the “system” S made of a single spin, and the “bath” B made of the remaining
spins. The Hamiltonian is then split into Hioy = Hgs + Hp + Hsp, where Hgp is the interaction Hamiltonian
between S and B.

Compute the evolution of the state when at t = 0 the system is prepared in

e BHB
Prot(0) = [+)+g ® ——
B
import numpy as np
from qutip import *
import matplotlib.pyplot as plt
HEHHRARRARHARHAR RSB AR R AR RARARRS
n=7; #Number of spins
Omega = 1; #Energy gap of single spin
g = np.random.rand(n,n) ; #Random coupling strengths

HHAAHHHARHBRARHBRAHBERAHRARHHHRS

# Useful operators

eye= Qobj ([[1,0], [0, 1]1); # Single spin identity
sx = Qobj ([[0,1], [1, 0]1); # Single spin S_x

sy = sigmay(); # Single spin S_y
sz = Qobj ([[1,0], [0,-1]]1); # Single spin S_z
EYE= [eyel*n; # n-spins identity

HHAAHBHARHBRARHBRARBARHHBARHHRS
## Hamiltonians
H=0; #Total
for i in range(n):
tEYE = EYE*1;tEYE[i] = sz;
H+= Omega/2*tensor (tEYE) ;
for i in range(n):
for j in range(n-i-1):
tzl = EYEx*1; tz2 = EYEx*1;
tz1[i] = sx; tz2[j] = sx;
H+=g[i,jl/2xtensor (tzl)*tensor (tz2);

HB=0 #Bath
for i in range(n-1):
tEYE = [eyel*(n-1);tEYE[i]
HB+= Omega/2*tensor (tEYE);
for i in range(n-1):
for j in range(n-i-2):
tzl = [eyel*(n-1); tz2
tz1[i] = sx; tz2[j]l = sx;
HB+=g[i+1,j+1]/2*tensor (tzl)*tensor (tz2);

[
wn
N

[eyel*(n-1);

HS = Omega/2%*sz; #System
HHAHHAHARRAABHABH A B AR B R B AR R RS
def initial_states(beta):

rhoS = Qobj ([[1, 1],[1, 111); rhoS/=rhoS.tr ();
thoB = (-beta*HB).expm(); rhoB/=rhoB.tr () ;
rSth = (-beta*HS).expm(); rSth/=rSth.tr () ;
rhol = tensor(rhoS, rhoB);

return [rhoI, rSthl
HHAHHAHARHARABHABHAHH R B R BH AR R RS
def calc_plot(beta, N):

t = np.linspace (0, 60*x0Omega, N);

states = initial_states(beta);
rhol = states[0]; rSth = states[1];

SX = EYE*1; SX[0] = sx; SX = tensor(SX);

SY = EYE#*1; SY[0] = sy; SY = tensor(SY);

SZ = EYEx1; SZ[0] = sz; SZ = tensor(SZ);
result = mesolve(H, rhoI, t, []1, [SX, SY, Szl)
SSx = result.expect[0];
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Figure 1: Output of code in Example 1.1. The blue line corresponds to 52 = 10, which means that the “bath”
of (n — 1) = 6 spins is initially cold. Instead, the orange line corresponds to 82 = 1, which means that the

“bath” is initially hot.

SSy
SSz

result.expect [1];
result.expect [2];

purity=np.zeros (N);entropy=np.zeros(N);relentr=np.zeros(N);

for i in range(N):
X = eye/2 + SSx[il/2*sx + SSy[il/2*sy + SSz[i]/2xsz
purity[i] = (X*X).tr ()
entropy[il=entropy_vn (X)
relentr [i]l=entropy_relative (X, rSth)

#Plots

plt.
plt.
plt.
plt.
plt.
plt.
plt.
.plot (t,
plt.
plt.
plt.
plt.

plt

subplot (221)

plot (t, SSx);
ylabel(r"$\langle \sigma_x \rangle$");
subplot (222)

plot (t, purity);

ylabel ("purity");

subplot (223)

entropy) ;

ylabel ("entropy");

subplot (224)

plot(t, relentr);
ylabel("relative entropy");

return [t, X, purity, entropy, relentr]
HHEAHHAHARBR B BB AHH R BB R B R A B R A B H A B AR B R RS
N= 100;
beta = 10;
calc_plot (beta, N)
beta = 1;
calc_plot (beta, N)
HHAHHAHBRHB R BB R HS S HS R BB BB R H SRS R H S HH S
plt.show();

Exercise 1.1: Time independent global Hamiltonian

Show that, if psp(0) = 7sp and if Hgp is time independent, psp(0) = wgp for all ¢.

Solution:
The unitary evolution is U(t) = e~*55! and determines the time evolution of the state through psp(t) =
U(t)psp(0)U(t)t. Since the initial state and the unitary transformation commute, for all ¢ we have



pse(t) = psp(0)

Exercise 1.2: Quantum Caldeira-Leggett model

Consider a harmonic oscillator with frequency w and Hamiltonian Hg = %(p% +w2x?3) coupled to a bath of one
other harmonic oscillator with the same frequency. The global Hamiltonian is

1 c 2
HSB:H5'+§ {pr + w? (ngﬁxs) :| (1)

The goal of this exercise is to show that, unlike the classical case, the local quantum state on S is not g =
e PHs | Zg, but is actually 75 = Trg {e PHse} /Zgp.
1. Show that for a classical system 7§ = 7.

2. Show that for a quantum system 7% # mg by computing (z%).

Solution:

1. Calculating the classical trace correponds to integrating over the phase space of the bath B, namely

lTrB {e—BHSB} _ /d3ngd3pB e PHsp _ e—BHsp 2_71' 3/2 2_71' 3/2 _ 2_71_ 3 e—BHs
Z h3 Z Z B Bw? Bw Z

. Remembering the partition function Z is just the trace over all the phase space of the Boltzmann
exponential,
6
g /d3x5d3x3d3psd3p3 o—BHss _ 2_7r
h6 Bw ) ’
we quickly realize that the reduced state on S coincides with the thermal state on S:

3 —BH
7'['*: /B_CU e_BHS:e o =Tgs
S o Zs

2. Writing the Hamiltonian in full we get

1 c 2
Hgp = 3 [pQS—FpQB—l-wQ:r%—I—wQ (xB—Eam) ]

In particular, the potential energy (depending on the coordinates zg, xp) can be written as the
scalar product

1 Wt e\ (zs 1oy, o

2 ( S B) ( —c w? TB 2

Since we want to diagonalize the Hamiltonian into its normal modes, we now diagonalize the
potential energy of the system. The characteristic polynomial of A and its solutions read

2 2 2 2

2 2 _ 2 B, C 4 _ _ .2 C €
W+ — =AW =) —c" = A" = A\2w —I—E)—i—w =02 A\t =w —l—mic 1+m

and the corresponding eigenvestors (a* B*)Jf satisty

2052 Foy/l+ £ —c a =~ 1
2 c2 ﬂ :O_)U:t = c 1_|_ @ .
—C —m:FC\/l—Fm 2w2 4wt

We can now write the initial coordinates xg, g in terms of the eigenmodes of the potential, namely

<$s> G o rs =q+ +q-
=q U +q v — ,
zp i o5 =55 (04 +q-) + /1 + 2 (g- — q4)




from which we can also find how the momenta transform by using the chain rule. In fact,

Py = —ihdy, = —ih[220,, + %20,,| =ps + (% — 1+ £ ) s
p- = =i, = —ih |£20,, + 220,,| =ps + (3% +/1+ £ ) v

Invering these relations we get

P—_—P+

PB = ST
= 1, _c ) _ 1
bs =P+ (2 + 4w? 1+02/(4w4)> p- <4w2\/1+c2/(4w4) 2)

A good consistency check is to calculate the commutators [z, pg] = thdas. Now we can rewrite
the Hamiltonian Hgp in terms of the normal modes. Let’s start from the kinetic terms:

B
1, , 1], 1 1 @

- 4 = — oy ok

2(105 PB) 2 | P+ 4+ c2/wt 2 4w?\ /14 ?/(4w?)

2
e 1 " 1 c
Lol W 2wt 2 4w?\/1+ c2/(4w?)

1 1 c 1 c
+2p [———+ 5+ = -
PP <4+c2/w4 (2 42 1+02/(4w4)> (2 42 1+c2/(4w4)>>]
2 2 2 2
jout @ c c c
— [ 1+1 —\/1+ —
4(1+02/(4w4))< it it T2 +4w4>

n Pe 1y14 8, ¢ e @
41 + &/ (D) Tt It w2 1t

1 2 2\
§(ps+p3)—2

1 1 c?
o | — — 4=
+2pep <4+02/w4+4 44w4(1+02/(4w4))>}

308+ =3 [4<1+cp22+/<4w4>> (=) + 4<1+§2_/<4w4>> S :2A_)]'

Now, let’s look at the potential terms
1 2 1 2 ’
. c B 5 c @ c
5{9‘75*(%3—&“)]—5 “ ”(zz‘ 1*@‘:)
> 2
5 c c c
1 14+ — - <=
+q- +(2 5 T +4w4 w2>
c c2 c c c2 c
2.q_ (1 1+ — - )& -1+ = - &
+ 20+ ( + (2 22 T +4w4 w2> <2w2 +4w4 w2)>1
2+ (o8- = )2—1 R Gy PO
s T8 208 2 4wt dw* w2 4w

2 02 c 2
+q2_<1+—+1+ — =i+t

[\

DO =

4wt 4w
2 62
#2ana- (1= (1435 + 5
1] 5 c 2 1, (w+ s o (W2 + A
5{3"’5*(“—%8)]:5[%(7 I b

Therefore, we finally wrote the Hamiltonian in diagonal form and we can separate the two modes

as follows 2y, 2
1 w* + + 2 2
H, == 4 14+ —
£ 7 39021+ &/ (b)) <pi Tt (14 )




Calling v? = 4w?(1 + ¢%/(4w*)) we can decompose the coordinate and momentum in the creation
and annihilation operators

" ih

¢ ; ,
= — + 5 = —— — s g = =,
q+ \/5( + a:t) b+ [\/5 (a:I: a:l:) v

Substituting this into the modes’ Hamiltonians we get

1 w2 + Ai 62 T T
79 4w2(1 + 2 /(4w?)) w \/ + Aot (alat +axal)

Here we can read the frequencies of the modes:

_ w? + Ayt L2 wh+ AL +20As AL (2w? + 2 Jw? + 2w?) )
T It | F WP+ Y)Wt A?)

As expected, the normal modes frequencies are simply the roots of the eigenvalues of the potential
matrix A. With these definitions the total Hamiltonian looks very simple, namely

1 1
HSB = hQ_i_(aLa_,_ —+ 5) —+ hQ_(aT_a_ -+ 5)

Neglecting the constant /(24 + ©Q_)/2, which is irrelavant for the statistical properties of the
system, we can calculate the partition function of the global system

1 1
1— e P 1 — = Br02-"

00
Zsp = Z e—BhQ+ne—BhQ_m —

n,m=0

To calculate <9c25> we make use of s = g4 + g— and the decomposition of the normal coordinates
in the corresponding creation and annihilation operators. In particular, taking the square of
(ay +a— + az_ 4F aT_) only the ayal, and af a, give a non-vanishing contribution becuase they do
not change the normal eigenmode. Therefore,

2

(x%) = €—<2a1a+ +2ala_ +2) =20 {—a

0
——log Zgp — ———log Z 1
2 (Bh;) 8758 T gianas) st ]

Noticing that Q4 + Q_ = (4w? + 2 /w?)/[2w/1 + 2/ (4w?)] = 2w+/1 + c2/(4w?) = v, and calcu-

lating the trivial derivatives of the partition function, we obtain

i B +Q ) _ q
e )

1 1
e — 1 u efh- 1

2\ _ p2 —
(zs) = ¢ +1} QL +Q

This is clearly different from the average (¥%)r,, which imples that the actual partial state 7 is
different from the local thermal state wg. Taking the classical limit, i — 0, we are left with

S B kpT _ kgT
() = = = :
ﬁQ_Q+ for — 2 12 w2

Exercise 1.3: Projective measurements with density matrices

Consider the rank 1 projectors IIg = |z)x| and the pure state ps = |¢))]. What corresponds to the Born
rule? Which equation describes the “collapse” of the wave function? When does the measurement reveal no
information, i.e. pls(x) = ps? Give a physical example where the projectors are not of rank 1.

Solution:
The Born rule is p(z) = Tr{llsps} = |(z[¢)|*> and the collapsed wave function is pg(z) =
MspsIls/p(x) = |x)x|. The measurement does not give any information when the state is already

in an eigenspace. A simple example consists of two spin 1/2 (distinguishable) systems. The total spin
operator has three eigenvalues (-1, 0, 1) with non-trivial degeneracy (1, 2, 1).




Exercise 1.4: POVM = probabilities
Show that any set of operators {M (r)}, satisfying

M(r)y>0, > M(r)=

gives rise to a set of well defined probabilities p(r) = Trg {M (r)ps} for any state pg.

Solution:
For any state ps we can write the eigendecomposition ps = >, A; [)}j], with A; > 0. The probability

then reads
r) =YX (IM(r)]j) >0
J

where we used the positivity of M (r), namely that, for all |¢), (¢|M(r)[)) > 0
Summing up all the probabilities we get

Zp(r) =Trs {ZM(T)PS} =Trs {ps} =1

T

Exercise 1.5: Imperfect quantum measurements on pure states

The operators K (r » Vp(r|z)s(z) and K, (r) = \/p(r|z)Ils(z) induce the same measurement statistics
M(r)=>,p(r \x)Hs( ) “but lead to dlfferent quantum states. Con51der a pure initial state ps = [} p|. We
now study how these different measurements affect the final state pf.

1. Show that the post-measurement state of K (r » Vp(rlx)g(z) is pure.
2. Show that the post-measurement state of K, (r) = /p(r|z)IIg(z) is generally not pure.
Solution:

1. The probability of observing the outcome r is
p(r) =Trg {Zp(rlw)ﬂs(fﬂ)ps} = Trg {M(r) [¥X¢[}.

The final state is pls(r) = K(r)psKT(r)/p(r). The state is pure iff [pls(r)]2 = pls(r). Without
writing explicitely the summations and using IIg(2)Ilg(y) = 0y ILs(z), we get

[ps(r)]* = \/ (rle) s (x)psv/p(r|y) s (y) v/ p(rla) s (") ps/p(rly ) s (y')

P \/ o)L (=) ) 1”'M( ) ) /oL () = fls(r)

2. The post-measument state reads
1
= — p(r|x)s(x)pslls(z).
o) ; (r|lz)Is(z) (z)

It is sufficient to find an example for which the state is not pure. Let pg = |[+)+|, with |+) =
(|0) +]1))/v/2, and T (0) = |0X0|, Pis(1) = |1)X1]. The final state then becomes

5 Y plrle); lake

which is clearly mixed when there is measurement error (p(r|z) ¢ {0,1}).
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Exercise 1.6: Classical measurements

Replace the notion of the densiti matrix with its classical counterpart, a probability vector p. Calling p(r|x)
the condiitonal probability of obtaiing the measurement result r given that the system is in state x, we define
the matrix My, (r) = dgyp(r|x).

What do M(r) and a POVM have in common? What is the quantum counterpart of the classical expression
M(r)p? Relate the probability p(r) = > p(r|z)p(z) to obtain the outcome r to the expression M (r)p.
Show that the (normalized) post-measurement state of the system given result r obeys Bayes’ rule p/’(x|r) =
p(r|x)p(z)/p(r). Verify that the average post-measurement state does not change: p’ = p.

Solution:
Similarly to the POVM, the classical matrix M (r) is non-negative and sum up to the identity:

T {M(r)p} = > p(rlz)p(x) >0, > M(r) =6, =1

Additionally, the scalar Tr {M (r)p} = p(r) is the probability of observing the outcome r. The quan-
tum counterpart of M (r)p is the (non-normalized) post-measurement state pls(r) = Y. K. (r)psK(r).
The normalized post-measurement state is p/(r) = M(r)p/p(r), whose components are p'(z|r) =
p(r|z)p(x)/p(r), obeying Bayes’ rules. The average post-measurement state is p’ = > M (r)p = Ip = p.

Exercise 1.7: Transposition in not a quantum channel

Let p = poo |0X0] + p10|1)X0] 4+ po1 [0X1] + p11 |1)1]| be the density matrix of a qubit. The transpose operation
with respect to the basis {|0),[1)} acts as Tp = poo |0)(0] + p10 [0)X1| + po1 [1){0] + p11 [1)(1]
Show that this map is positive, but not completely positive.

7

Solution:

For a matrix M, the transposed matrix M7 has the same spectrum. Therefore, if M > 0 then also
MT > 0. This means that the transposition 7 is indeed positive. However, we now consider the Bell
state (]00) + |11))/v/2 in a larger Hilber space. The initial density matrix reads psp = £(J00)00| +
[00)X11] 4 |11)00| + |11)(11|), while the final one reads

Tspsi = 5(100K00| + |10K01] +01X10] + [11X11)) = 2

S O O
o = O o
o o= O
_ o O O

which has one negative eigenvalue (—1/2) with the eigenvector |10) —|01). Therefore this transformation
in not physical, meaning that it cannot be realized by an anctual physical system.

Exercise 1.8: Extending convex linear maps

Let C be a convex linear map acting on density matrices p of a Hilbert space with dimension dimH = d. Show
that every complex matrix A on H can be written as a linear combination of density matrices p; with complex
coefficients ¢; € C, i.e. A= Cip;.

The extension C is then defined via CA = ZL ciCp;.

~

Solution:

Since every matrix A can be written as a combination some hermitian matrices A1, As as A = A1 + 1A,
and every hermitian B can be written as the difference B = By — B_ with By hermitian positive
matrices, all matrices A can be written as a linear combination of hermitian positive matrices. This
means that every matrix A can be written as a linear combination of states p;.

Exercise 1.9: Non-uniqueness of the operator-sum representation

Consider the map Cp = " KopK], and define K, = >4 tuapKp for an arbitrary unitary U = {uags}.
Show that Cp =3, KapK},.

11



Solution:
Using the unitary of U, namely that UUT = I, or equivalently > g UapUlg = 0oy we get

Cp= uapKppKlui, = KgpKlop, = KppK}
afy By B

Exercise 1.10: Using the unitary dilation theorem
Use the unitary dilation theorem to derive
ps(r) =C(rps =Y Ko, psKl,  ps=Cps=> KapsK]

and identify the operators K, . Confirm that the maximum number of operators K, is the dimansion of the
ancilla H 4, namely d?.

Solution:
The unitary dilation therorem states that

C(r)ps = Tra {Ta(NUsa(ps © [XBNULEL) } = 3 (114 Ta(r)Usalps © [6X6] UL AT 17)

J

Cr)ps =Y (laTTa(r)Usa |9) ps (d] 4 U ATIa(r) [5) 4 -

J

In the sum there are terms that vanish because of the projector I14(r). In particular, the surviving terms
are those for which IT4(r) |j) # 0. Calling this set {j.} we identify the operator

Kj, = (Jrl 4 Ta(r)Usa|9) 4 -

Clearly, summing over all outcomes r yields K; = (j|, Usa |¢) 4. Furthermore, since we labeled the
operators with the basis of H 4 (j), the maximum number of K is equal to the dimension of H 4, i.e. d?.

Exercise 1.11: Breaking the unitary dilation theorem

Consider the interaction of two qubits. The first one being the system and the second one being the ancilla.
We consider the maximally entangled stated |+) = (|00) +[11))/v/2 and the evolution governed by the unitary
Usa = [+)X+] + |—)X10] 4 |10)—| + |01){01]|. Let the initial state pga = |+){+| be entangled.

1. Confirm that Ug4 is unitary.
2. The initial reduced state is pg = (|[OX0| + [1X1])/2.
3. The final state p/y coincides with the initial one, p'y = pg.

4. If we first perform a measurement of the initial system in its eigenbasis, the initial system state does
not change on average, |0X0| ps [0X0] + |1)X1] ps |1)}1| = ps, but the final system state now is [0)0| /4 +

3I1)1] /4 # ps.

The same reduced initial system state gives rise to two different final states. Thus, we cannot associate
any map C acting only on S with this input-output relation. This is because the global states are different.
In particular, having an initial entangled states makes it impossible to mix different system states without
influencing the dynamics.

Solution:

1. Using that |+),|01),|10) are orthogonal, we get

UsaU§ 4 = Uga = [+)+| + |=X—| + 01X01| + [10)10| = I

12



T {100X00] + [00)11] + [1100] + [11X11]} = 2 ([0K0] + [1X1]) = ps

Psa = USAPSAU;A = psa = plg = ps.

4. After the measurement the global state becomes
1 1
psa = 5(|00X00] + [11X11[) = Z ([+X+[ + [=X=)
whose reduced system state is ps = (|0X0| 4 |1)(1]). After the evolution,

s = 5UsA(HHICH +1=X-)ULs = 3 () + [10)10)

that has as the reduced state . 3
pls = 710)0] + 1)1,

Exercise 1.12: CPTP map between different Hilbert spaces

Verify that the following maps are CPTP by finding an operator-sum representation.
1. The trace map Cp = Tr {p} discarding the system and destrying all the information contained within it.
2. The partial trace map Cp12 = Tra {p12} = p1.
3. The state creation C,1 = p.

4. The state addition map C,,p1 = p1 ® p2

Solution:

1. Take the operators K, to be vectors with the only non-zero coordinate being the a one, namely
K, = 0q;. The product satisfies ) K, 1K, = Y o 9ajdai = 0;; and the corresponding map is

Cp= Z daipijdos = Z Paa = Tr {p}.

a,i]

2. Take the operators K, = I®|c), which is the extension of the previous point. The sum K, 1K, =
I®) ,lafa] =1®1 and the map is

Coiz =Y _{alyprzla), = Tra {p12}.

[e%

3. Consider the eigendecomposition of p, namely p = >, p; |i)(i|. Taking the operator K; = \/p; |i),
we can verify that the sum ), K f K; =5 ,p; =1 =Ic. The corresponding operator reads

Cl=> KilK| =p.

4. Again, take the eigendecomposition of p and take the extended operators K; = I; ® p; |i),. The
sum satisfies ), K J K; =1; ® I¢, and the corresponding map reads

Cpop1 = ZKileiT = p1 ® p2.

13



Exercise 1.13: Classical mutual informations

Consider three binary random variables S, B, C' with values s,b,c. On a given day, S described whether the sun
shines, B whether the number of sunburns is high, C' whether the number of ice cream salves is high. We set
the conditional probabilities p(b=1]s =1) =p(c=1ls=1)=p(b=0|s=0) =p(c=0|s=0) = A € [1/2,1].
By conservation of probabilities, p(b =0|s =1) =plc=0[s=1)=pb=1s=0) =plc=1s=0)=1—- A\
Furthermore, we assume p(s =1) = 1/2.

1. Show that B and C are correlated unless A = 1/2 by computing the mutual information

p(b, c)
p(b)p(c)”

Using p(b,c) = Y, p(b,c,s) = >, p(b|s)p(c|s)p(s), show that Ip.c = 0 (no correlations) imples A = 1/2,
and Ip.c = In2 (maximal correlations) implies A = 1.

Ig.c = Zp(b7 ¢)In
b,c

2. Show that Ip.¢ = In2 — Sg,(A) and find the values of A for which S and B are maximally (un)correlated.

3. Introduce an intervention variable Ig labeling three actions: do nothing (¢ =idle), make the sun shine
(i = 1) or block sun shine (i = 0). For ¢ =idle, we set the conditional probabilities as before, p(b|s,idle) =
p(bls). We further assume p(b|s,i = 1) = A and p(b|s,i = 0) = 1 — X independent of s because we are
intervening. Calculate the mutual information Ip.rs. S is a cause of B is there are correlations between
Is and B. Find when S is not the cause of B.

4. Confirm that in general the Kolmogorov consistency condition is not satisfied p(b, s) # >, p(b, s,1).

Solution:

1. First, we calculate the probabilities of b and ¢: p(b) = > p(b,s) = >, p(b|s)p(s) = 1/2 = p(c).
Then, noticing that p(b, ¢) = [p(b]0)p(c|0)+p(b|1)p(c|1)]/2 we can calculate the mutual information

Ipc =2+ (1 —-2)MEN+ (1 - XN)2) + 201 — A) In(4X[1 — A]) = In2 — Ssu(2A[1 — A)).

To minimize the mutual information we need to maximize the Shannon entropy by setting A = 1/2.
In this case Ig.c = 0 the two variables are uncorrelated since it is all up to a coin flip. Instead, the
maximum mutual information is obtained when the Shannon entropy is minimized, i.e. by setting
A = 1. In this case Ig.c = In2 and b, ¢ have always the same value.

2. The joint probability of b,s is p(b,s) = p(bls)p(s) = p(b|s)/2, so we can calculate the mutual
information
Ip.s = /\ln(2)\) aF (1 = /\) 111(2(1 = )\)) =In2— SSh()\)
Again, for A = 1/2, Ip.s = 0 and the events are uncorrelated, whereas for A = 1, Ip.¢ = In2 and
the events are maximally correlated.

3. The variable ¢ has three possible outcomes. Let’s list them
idle — p(b,idle) = >, p(b]s)p(s)p(idle) = 1p(idle)
i=q 1 — pb1)=p0li=1)p(i=1) =pbli=1)q
0 = p(b,0)=p(bli =0)p(i =0) = p(bli =0)qo
Now we can calculate the mutual information
Tz, = Zp(b’ i) In p(b, 1) (1-Na
byi

q1

1 A
= Ssu[p()] + plidie) In 5+ Ay In "%+ (1= N)gy In +
1

p(b)p(i)
Ao

= )\qo hl q— 4 (]. e )\)qO ln
0

Ip.1q = Ssu[p(b)] — p(idle) In2 — [1 — p(idle)]Ssu[A]

We can minimize the mutual information by choosing (i) p(idle) = 1, such that Ip.;, = 0, or (ii)
A = 1/2, such that Ip.;; = 0. In the first case we are not intervening at all, in the second one S
and B are uncorrelated in the first place.

(1 - A)Qo
q0

4. Tt is sufficient to show an example. Let p(i = 0) = p(i = 1) = 1/2. Then, >, p(b,s,i) = (1-X)/2+
A/2 = 1/2 is independent of both b and s. Now, the Kolmogorov consistency condition cannot be
satisfied because, if it were, we would violate the probability conservation: >, . p(b,s) = 2, which
is absurd.
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Exercise 1.14: Quantum joint probability

The probability of observing the outcomes 7; at times ¢; for a quantum system is given by
P(ra) = Tt {P (1)U (tns tu-1) -~ ProU(t1, t0)P(ro)p}
where P(r;)p = U (r)pIl(r;) and U(ty, tx)p = U (t, tx)pUt (11, t1,).
1. Show that the joint probability is non-negative and sums to 1.

2. Show that in general the joint probability does not satisfy the Kolmogorov consistency condition

p(frn7... 7/,7/l’... ’ro)#Zp(rrny... N )TO)
r

Solution:

1. Choosing a base |j) of the Hilbert space, we define the kets |v;) as
|Uj> = H(T0>UT(tlv tO) e UT(tm tn71>H(rn) |J> :

Then the probability reads p(r,) = >, (vj|plv;) > 0 which is non-negative by virtue of the non-
negativity of p. Summing over all possible outcomes we get

Zp(rn) =Tr {Z P(Tn)u(tmtn—l) T Zp(’l"1)2/{(t1,t0) ZP(TO)/)} =Tr {u(tn,to)f’} =1

where we used that the projectors sum to the identity.

2. It is sufficient to show an example. Let the initial state of a qubit be p = |+)+|. The first
measurement is done on the |0) , |1) basis. Then, the system evolves unitarily through the identity.
Finally, the last measurement is done on the |£) basis. If we first measurement is not performed,
then the probability of observing + is p(4+) = 1. Instead, when we do the first measurement and
coarse-grain over the outcome, we get p(+) = % This is basically the Stern-Gerlach experiment.

Exercise 1.15: Multi-linearity of the process tensor

Based on the definition of the process tensor:
T[C(rn), -+, C(ro)] = Trp {C(rn )Usp(tn, tn—1) - -- C(r1)Usp(t1,t0)C(r0) psB(0)}
show that, VI € {0,1,--- ,n},
TlAp, - ag A+ 0B, Ao) = arZ[ A, - AL Ao F0iE[ A, B Al

Consider a Hilbert space Hg of dimension d. The space of linear maps on Hg is L(Hs). Furthermore, the space
of superoperators is L(L£(Hg)). The tensor product acts as follows:

T:L(L(Hs)) @@ LIL(Hs)) = L(Hs)-

n+1times

Deduce that the dimension of the input space of T is d*("+1).

Solution:

The multi-linearity of the process tensor follows directly from the linearity of the superoperators and
of the trace. The Hilbert space has dimension d. L£(Hg) has dimension d?. L£(L(Hs)) has dimension
d*. The tensor product of two spaces A ® B has dimension dsdp. Therefore the dimension of the input
space is d4(+1),

15



Exercise 1.16: Quantum state tomography

Suppose you have sufficiently many copies of the state p = p|0)0| + (1 — p) |1)}1|+ ¢|0)1|+ ¢* [1X0], with ¢ € C
satisfying |c|? < p(1 — p).
Devise a measurement strategy yo determine p by using the Bloch sphere representation p = (I+r-0)/2.
This procedure can be generalized to arbitrary d—dimensional quantum systems using a generalized Bloch

representation
1 d(d—1)
p= p (]I + Tr - A)

with A a vector of d> — 1 traceless Hermitian matrices obeying Tr {A;A;} = 24;;.

Solution:

The probability of observing o, = 1 is p,—; = p. The probability of observing o, = 1 is p,—1 =
Tr {|+)X+]| p} = R(c) + 1/2. The probability of oserving o, = 1 is py—1 = Tr {|+,X+y| p} = S(c) + 1/2.
Therefore, with these 3 independent mesurements we can reconstruct the 3 independent parameters of
p-

Exercise 1.17: States spanning £(Hs)
Let {|n)} be a basis of Hg. We consider the states P, ;) = [¢n,m )}(¥n,m| defined through

7‘””5@ ifn > m,
|'(/)n,m> = ‘n> ifn = m,
% ifn < m,

Confirm that the set of states P, ,,) linearly spans the entire space of d x d matrices.

Solution:

Given the definition of P, ,,), we have a set of d? matrices. If these are linearly independent, then
they form a basis for £(#Hg) (which has dimension d?). Let’s suppose they are not linearly independent.
Then, we can write one of such states as a linear combination of the linearly independent others:

Pa :ZCQPQ—)TI‘{PQ}I 12265
B B

Using that these states are projectors we notice that Tr {Ps P, } = (7|Ps|y) < 1 with the equality reached
only when 3 = v. Then, since P? = P,, we have

Tr{P2} =1=) cpe,Tr {PsP,} < 1
By

which is absurd.

Exercise 1.18: Map linear decomposition

Every map C can be linearly expanded in the basis C = Za, 5 CapBap, where the superoperators B,y are defined
through
Bagps = PoTr {llgps},

with {P,} states that form a basis of L(Hg), and {IIg} forming an informationally complete set of projectors.
Show that, if C preserves Hermiticity, then the coefficients c,g € R. If the map is trace-preserving, then

Zacaﬂ =1.

Solution:

Let A= A" a Hermitian matrix. The map acts as follows CA =" g CapPaTr {IIgA} . Taking the her-
mitian conjugate: (CA)T = Zaﬁ CopPaTr {HBAT} = Eaﬁ copPaTr {IIgA}. If C preserves Hermiticity,
then (CA)T = CA, which means that each coefficients must be equal: c,s = Chp = Cap €R.

Now we relax all the assumptions made on C and A to study the trace-preserving property. The trace
of the mapped operator is Tr {CA} = > scapTr {IlgA}. If the operator is trace-preserving, then
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VA, Tr{XA} = Tr{lA}, with X = }_ 5 caplls. Since the trace is a scalar product the condition is
satisfied VA if and only if X = I. By using the same projectors to decompose the identity operator we

find Eaﬂcaﬁnlg = Zﬂnlg = Za Cap = 1.

Exercise 1.19: Decorrelated interventions
The tensor product acts as follows:

T LL(HS)) @+ @ LIL(Hs)) = L(Hs).

n—+1times

An element C,,¢ of the input space can be written using the base Bygps = PoTr {Ilgps} as

Cno = Z o Z Canﬁn~-aoﬁoBanﬁn Q- Baoﬁo?

anfBn aofo

with cq, 8, .-a08, DOt necesserally decoupled.

Confirm that the element C,,.o(r,) corresponding to applying a sequence of control operations C(r,,) - - - C(rg)
can be written as a tensor product Cy.o(r,) = C(r,) ® - - ® C(rg), which corresponds to a decorrelated inter-
vention.

Solution:
The linear reconstruction of any set of intruments combined with the multi-linearity of the process tensor
yields

T[Cro(rn)] = Z T Z Canfn """ CO‘OﬁO‘E[Banﬁn T Baoﬁo] =% Z CanBnBanpnr Z CaopoBaopo

0n fBn aofo anBn aofo

From which we can identify

Crio(ry) = Z CanBnBanp, ® - ® Z CaiofoBao o

0tnfBn ao0pBo

Exercise 1.20: Containment property of the process tensor

The process tensor T was defined on the set of times {t¢, - - , ¢, }. Consider any subset of times T C {tg, - ,t,}.
Show that the process tensor Tr defined on this subset is contained in the original ¥, meaning that all proba-
bilities predictable from 7 can also be recovered from ¥. Thus, process tensors Tp,--- ,Tr, for discrete set
of times T7 C --- C T form a hierarchy.

Solution:
Callingj’ the complementary set of times, the process tensor T can be obtained from ¥ by using, for
all t € T', the identity instrument. For example:

‘IT [Ctl ’ Ct3] = ‘I[Itoa Ct1 ) Itza Ctg]

Exercise 1.21: Process tensor and state preparation

The process tensor does not depend linearly on the initial system state pg(0) in general. However, show that
is does for an initial state of the form psp(0) = ps(0) ® pp(0). In this case, the first control operation C(rp)
becomes redundant and one can define the process tensor are T[C(ry,),- - ,C(r1), ps(0)], with pg(0) arbitrary.

~

Solution:
By linearity of the superoperators and trace it is easy to verify that if the initial state is ps(0) = €A+ 3B,
then
S[C(Tn)’ T aC(TO)] = aTrp {C(Tn)u(tna tn—l) o 'u(tla tO)C(TO)A ® pB(O)} +
+ BTrp {C(rn)U(tn, tn-1) - - - U(t1,t0)C(r0) B ® pp(0)} -
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Exercise 1.22: Process tensor and correlations functions

Let A, B be arbitrary system observables. The process tensor can be used to compute correlations functions of
the form

(A(t)B(0)) = Trsz {AUSB(t, 0)Bpsp(0)UL, (. 0)} .

Solution:
We write the spectral decomposition of A as A =3)"_ala)a|. Since

(A(W)B(©) = 3" aTrss {|a)a| Uss(t, 0)Bpss (0)UL5(t,0)}

we can already identify the process tensor

(A(t)B(0)) = ) aZ[Pu, Bo]

a

with P, = |a)a| is a projector and Bppsp(0) = Bpsp(0). The latter superoperator is not necessarily
CP, so it canno be implemented physically. However, we can decompose it in physical maps as By =

Zaﬂ CagBag:
Bopsp = ) _blbXblpsp Y 'K/ =D b|bXb'| Trs {|b'}bl ps} -
b 4

bb’

To write this using the basis B,g, one needs to decompose |b)(b'| in the P, basis and [b')(b| in the IIg
basis.

Exercise 1.23: Markovianity of closed systems

Verify that an isolated (i.e. unitarily evolving) system is Markovian.

Solution:
The process tensor for the isolated system reads

Z[C(rn), -+ ,C(r0)] = C(rn)U(tn, tn—1) - - - U(t1,t0)C(r0)ps(0)
Applying a causal break corresponds to
T[Baysi Crk-1) -+ C(ro)] = Ultn, tr)os™ Trs {Paps(te)}

Then, the state after the causal break is

(o) -
PnBaysr, C(Tk—1) - -+ ,C(rg)] = ( k)0s s {Psps(tr)}

- — - = U(tn, tr)o g™
Trs {U(tn, te)o S Trg {P,gps(tk)}}

which is clearly independent of all previous interventions.

Exercise 1.24: Factorization of the process tensor

1. Show that if the process tensor factorizes as
T[C(rn), -+ ,Cro)] = C(rn)E(tn, tn—1) - - E(t1,0)C(r0) ps(0),
with ps(0) = Trp {psp} and E(¢;,t;) CPTP maps independent of the interventions C(ry) - --C(rg), then

the process is Markovian.

2. Consider a Markovian process in which the tensor product is obtained by applying only causal breaks,

which decorrelate the system-bath state: Bogpsp = Ugl) ® Trs {Pspsp}. One can therefore write

T[Banﬁn e Baoﬁo] = OK(S'OC”)TFS {Pﬁn,g(tm tn—l)USSanil)} oo Trs {Pﬁlg(tla tO)afS'QO)} Trs {PﬂopS(O)} :

Using the Markovian property, prove that the CPTP maps E(t;, t;,) are independent of the history of the
system.
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Solution:

1. Using a causal break at time ¢, the state at time ¢,, is

 TBawss Clric1), - Cr0)]  Elta, t)o S Trs {Paps(ti)} (o)
Pstn) = R (Mo Clrnr)r - COO)  Tes (Bops(tn)] o om)%s

is independent of the interventions, which means that the process is Markovian.

2. Suppose there are two histories;, h = (Bg,ak-1,0k-1, " ,®0,00), and h’
(Bl 1> Bre1s - 00, 6p)  # h, such that they result in different propagations:
Etity) = E(ty,trlh) # E(ty,ti)h’) = E'(t;,tr). We can now look at the definition of
Markovianity with the causal break choosing the particular set of interventions according to h
and h’, respectively.

pi [Bakﬂk e Baoﬁo] = é(th tk)agak)
p;[Bakﬁlk "'Baéﬁé] £ (tlatk) G

which means that the state after a causal break depends on the history before it, which contradicts
the Markov property. Therefore, by absurd, we have proven that £(¢;,t;) do not depend on the
prior history.

Exercise 1.25: Dynamical maps on classically correlated states

Consider a system-bath state with zero quantum discord with respect to a complete set of system projectors

|7)(j| ¢ such that

ps5(0 ZIJ (il pss |i)i] = ij )il © pB (),

with p; probability distribution and pp(j ) the state of the bath given the state [j)(j|g of the system.
Show that the reduced system dynamics pg(t) = Trp {USBpSBUSB} is CPTP for any unitary Ugp.

Solution:
Introducing the spectral decomposition of pp(j) = >, p(blj) [b;)b;|, we get

ps(t) =Tep { Uss > p; [i¥ils ® > p(01) 1b;)b;] 5 Uk
b

ps(t) =Y (V' [Ussv/p013)Ib;) 5 p; 3)dls (b; UL 5/p(I) )
bbj

We now introduce two Ig as follows

)= > ¥UssvV/pli)Ibs) 5 [k)XKls s 1)l iXels (051U8 5 v/pO1AIY)

bb'j ki

which allow us to change the index inside the B brakets thanks to the orthonormality of the |j) ¢ basis,

namely
=D > & Usnv/pOIk)br) g |kXE|s ps 1)1 )il 5 (9ilUS 5 V/POIDI) 5

bb'j ki

We now recognize the structure py = > KopK I. In particular, the K operators are

Ky = (b'[Usp/p(blk)|br) 5 [k)Xk|g -

For the evolution to be a CPTP map, these operators must satisfy the relation ) K TK, =1, so we
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have to check:

KK =) 1iXilg (5| ULgv/pOI)Y) 5 (8| Ussv/p0]k) |bi) 5 1)Kl 5
bb’ bb! ik

= Z Z )il 5 (bl v/P(O]0) /P (BIK) [bie) 5 [N

—ZZl (k| g (ik) g (bilbw) g /D(bli)\/p(b]k)

—ZZI (bilbi)  p(b]1) ZI ils =1s

So we have found the operator-sum representation of the map.

Exercise 1.26: Kolmogorov consistency condition on classically correlated states
Assuming that for all ¢; the joint density matrix is

psp(ti) =Y p(ritr) [r)rils @ pr(tilr),

r

show that the joint probabilities satisfy the Kolmogorov consistency condition.

Solution:
The joint probability is given by

p(rn) = Tr {P(ro)U(tn,tn-1) - U(t1,t0)P(10)psp(0)} .

Taking the marginal over the the outcome r; we have

> p(rn) =Tr {73( W)U (b, tn—1) (ZP Tl > tlatO)P(TO)PSB(O)}-

)

Since the action of the projective measurement is P(r;)p = |riXri| p |r1)ri|, and, by hypotesis, the state
at time ¢; is classically correlated, we have

> Pr)pss(t) = D Iri)rils plsi 1) [siXsils © pr(tils) [ri)rils = psp(ti),

T1 T1,81

which means that taking the marginal does not change the state. Therefore, the Kolmogorov consistency
condition is satisfied:

p(TOa"’ 7I]Ila"' )Tn) :Zp(roa'” y DUy 7rn)
Tl

Exercise 1.27: Classicality imples incoherence

Prove that, if the hierarchy of probabilities p(r,,---,71|Co) obeys the Kolmogorov consistency condition, then
the process is incoherent.

Solution:
The joint probability given the initial state preparation is

p(rn, -+, 11[Co) = Trs {Z[P(rn), - -, P(r1), Col} -
Since it satisfies the Kolmogorov consistency condition, we have
Trs {Z[P(rn), -+, L1, - - P(r1),Col} = p(rn,- -+ , 7, 71|Co) =
= Zp(rn’ o1y, 11]Co) = Trg {Z[P(rn),- -+ , Dry, -+ - s P(r1), Col},

where Dp, is the marginal of the projective measurement, namely Dg, = Z” P(r;). The two tensor
product are actually the same because of how the projective measurement acts. Indeed, since R is
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non-degenerate the outcome of the last measurement fully determines the final state

which means that, VI,

Repeating this process and marginalizing the projective measurements we get the definition of
n—incoherence, namely that the process tensors

are all the same. Furthermore, using the Kolmogorov consistency relation on the last intervention allows
us to prove the n — 1-incoherence, and so on. Therefore the process is incoherent.

‘Z[P(Tn)v to 7P(T1)7CO] = p(rna T ,7"1|Co) |rn><rn|5 )

‘I['P(Tn), ,Il,"'P(Tl),C()] :‘I['P(T‘n), ,DR”“- ,P(Tl),CO].

D D
‘I[DRM{ Ii:l },{ II? }7(30]

Exercise 1.28: Non-classical Markovian processes

Find examples of non-classical process that are Markovian and incoherent with respect to a restricted set of
preparations Cy or not invertible.

Solution:
Let ps(to) = (|0X0] + |1)X1])/2, and let the dynamics be unitary. For the unitary Co: Cops(to) = ps(to)-
Therefore, if we take a unitary preparation and a unitary evolution on the maximally mixed state we get

as expected. Now, instead of taking a unitary preparation, we take Cops(to) = |0X0|, and consider the
following unitaries Us 1 = Z/{I’O, and U o [0X0| = |+)+|. In this case

whereas

Therefore the Kolmogorov consistency condition is not satisfied for all preparations Co.

> p(ra,m1[Co) = Trs {P(r2)Us1 D, U 0Cops(to)} = Trs {P(ra)ps(to)} = p(r2,74),

> p(ra,711Co) = Trs {P(ra)lUa 1 Dr,Us 0Cops(to)} = Trs {P(r2) (|0X0] + |1X1])/2} = 1/2,

p(r2; 7h) = Trs {P(r2) [0X0]} = dor,-

Exercise 1.29: Classical from quantum Markovianity

Consider a quantum stochastic process that yields for a fixed set of itnerventions the probabilities p(r,). Then

1.

If the quantum stochastic process is Markovian and if all interventions are causal breaks, then the prob-
abilities p(r,) satify the Markov property, namely p(r,|rn—1) = p(rn|rn-1)-

If we add to the assumptions of point (1) that the probabilities p(r,) also satisfy the Kolmogorov consis-
tency condition, then these probabilities describe a classical Markov process.

Solution:

1. The Markovianity condition of a quantum stochastic process reads
pl[Bakﬁk’Ck_h e )CO] = pl[U(ak)]7

for By, 5, causal break. Then, when all interventions are causal breaks, we can write the probabil-
ities as

p(rn—1) = Tr {Ba, 18, .Usp(tn-1,tn—2) - - - UsB(t1,t0)Bassepsn(0)} = p(rn—_1)Trs {U(a’“*l)}
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2 Classical Stochastic Thermodynamics

Exercise 2.1: Heat engine efficiency

The first law for a system in contact with a work source and a hot and a cold bath reads
AUs =W + Qu + Qc,

where Q ¢y is the heat flow from the hot (cold) bath. Assuming that the baths are described throughout the
process by constant temperatures Ty > T, the second law generalizes to
Y =Ag— Qi _ @ >0.
Ty T —
For the set-up to act as a heat engine, we want to extract work from it W < 0. We further consider a cyclically
working heat engine, which has entually reached a steady state characterized by AUg = 0 and ASg = 0 per
cycle.
Show that, in this case, W < 0 = Qg > 0, which implies that the heat engine’s efficiency per cycle,

W
n=—-——2>0.
H
Next, use AUg = 0 and ASgs = 0 and the first and second laws of thermodynamics to show that the following
relations hold:

Here, n¢ is the Carnot efficiency, which is the maximum efficiency of any engine working between two heat
baths with fixed temperatures. Thus, any excess in the entropy production ¥ diminishes the efficiency of the
engine.

Solution:
Qu Q¢ 1 1 W
= O — ) > >
Ty To 209\ T )2 20
_ W Qr+Qc 1 Te 1TcX -
=—— = = - == <nc
Qu Qu Ty  Qu

Exercise 2.2: Intrinsic entropies and energies and Landauer’s principle

Generalize the magnetic memory example to the case where the two mesostates x € {0, 1} have different intrinsic
entropy Sy # &1 and internal energies Uy # U;.

Show that the second law for an equilibration process (no external work supplied) starting with some p,
and ending with 7, becomes

1
Y= kBSSh(WI) - kBSSh(p:L’) + ;(ﬂ—r _px)Sx - T ;Z/Iz(ﬂ—x _px) >0

Solution:
Given the probability to be in a mesostate p, and in a microstate p(iy|z), the Shannon entropy is

kpSsh = —kp ZZP il@)pe In[p(ile)p.] = ks ZZP il)p(@) [l p(i) + Inp,]

kpSsh = kpSsn(Pz) + > prSsnlp(iz|2)] = kBSsh(p2) + D prSe

For the process that maps p, — m, without requiring work W = 0, we can write the first and the second
law of thermodynamics:

AT=10) E=ASS—%20
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which combined yield

Y= kB[SSh(ﬂ'x) - SSh(px)] + ;(ﬂ'z _px)Sx - %;(7@0 _px)ux > 0.

Notably, one can have my > py = % and still have the process happening spontaneusly. Indeed, taking
Uy =Uso, mo =1, Sy = aS1 we get

Y=—-kpln2+ %[So —81] — %[OZ— ].] > k31n2,

which is satisfied for a sufficiently large «.

Exercise 2.3: Rate master equation

Derive that the transition matrix 7; ; for a finite time steo from ¢ to ¢; follows from the rate master equation
dip(t) = R(t)p(t) as the time-ordered exponential

t
Ty = exp, [/ R(t)dt} .
123

If the rate matrix does not depend on time, show that Tj ; = e =) Then, under the assumption that the
dynamics is Markovian, show that for any n € N

p(xn, T 7560) = (T","L—l)xm%nfl t (TLO):Cl,TropTro (0)7

where the joint probability p(a,,- - ,x0) completely characterizes the stochastic process.

Solution:
Rewriting the rate master equation we can write the solution of the differential equation in terms of the
product of many steps, namely

ty

N
p(t+ dt) ~ [I+ R(t)dt]p(t) — p(ti) = Lvl@w 11 eR(“)dti] p(tr) = exp, { R(t)dt] p(t)

tk

which coincides with the time-ordered exponential.
If the rate matrix does not depend on t it is easy to check that p(t) = ef*p(0) is a solution. Indeed,

9ip(t) = Re""'p(0) = Rp(?).
Using the Markov property we can write the joint probability distribution as

P(Tns -+ 1 20) = P(Tn|Xn—1)P(Tn-1|Xn—2) - - P(z1]T0) = p(Tn|Trn—1)p(Tn-1|Tn—2) - - p(z1]|20)P(20),

where we recognize the conditional probabilities p(z;|xx), which correspond to the transition matrices
(T1.k)w, 2 » therefore

(T, ,®0) = (Tn,n—l)zn,znfl (Tn—l,n—2)wn71,znfz T (Tl,O)m1,mop(x0)~

Exercise 2.4: Steady state and equilibrium state

Use the rate master equation d,p(t) = R(¢t)p(t) and the local detailed balance

Rz,m/(At) o Ez’(At) - Efﬂ(/\t)

Rw’,m()\t) P k‘BT

to show that the Gibbs state, m, = e ¥/ Zg is a steady-state, i.e. Rt = 0.

A rate master equation has a unique steady-state solution if it is fully connected or irreducible, meaning
that for any two states x,z’ it is always possible to construct a path x — z; — .-+ — 2z’ using other states
2,1 € {1,--+ ,n} such that the product Ry 4, Ry, 4, , ' Ra, o does not vanish. Construct a rate matrix with
multiple steady states and confirm that it is not irreducible. What kind of physical situation could be described
by rate master equations with multiple steady states?
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Solution:
Plugging the Gibbs state into the rate master equation and using the local detailed balance, we get
(omitting the A dependencies)

x! !

where in the last step we used the fact that the rate matrix R satisfies ) R, . = 0. Therefore, the
Gibbs state is a steady state of the Markovian dynamics.
Let’s consider two separate 2-dimensional systems that evolve with the rate matrix

- z 0 0
z —x 0 0
= 0 0 -y
0 0 Yy -y

that has a 2-dimensional eigenspace of steady states, with basis

N —
| =
= = O O

O O = =

The rate matrix is not irreducible since it can be decomposed into two independent parts. In particular,
we obtain such a rate matrix by considering completely independent systems that evolve separately.

Exercise 2.5: Out-of-equilibrium 2-level system
Consider a two-level system with states 0,1 described by the rate master equation
d (po(t) _eBAGD/2 GBAGD/2 Y\ (po(t)
2 ) T emsaoarz _esaoorz ) () )
with T an overall relaxation rate and A(\;) the time-dependent energy gap between 0 and 1. Assume the system

starts in equilibrium, p(0) = m(Ag). By considering a numerical parametrization of your choice, show that the
system follows the instanteous steady state, i.e. p(t) = 7w(\¢) when the driving is slow, namely \; < T".

Solution:
The rate matrix R();) has eigenvalues and eigenvectors

A=0, w(t)= . ( e_aa) : A = —2lcosh(a), v = <_11)

e¥ 4 e > \e

with a = BA()\;)/2 time-dependent. For all ¢, {n(t), v} span R?, so we can always write the probability
vector at time ¢ as p(t) = x1(t)n(t) + B(t)v. Since p(t) is a probability vector, and > v, = 0, the
coefficient x;(t) = 1Vt. Now, we can write the evolution of the probability vector through the rate matrix

p(t+dt) = w(t+ dt) + B(t + dt)v = p(t) + dtR(\)p(t) = 7 (t) + B(t)v — dtI'2 cosh(a)5(t)v,
which gives the following differential equation
# + Bv = —2T cosh(a)B(t)v.

The derivative of the Gibbs state follows from

p ey e*éy (& — o) . 2 20 20
o — - e —e€ = TTpx = T= —m8M—V
t7h0 e 4+ e~ (60‘ 4= e—a)Q 0 ex 4 e~ (ea e e—a)2 (60‘ 4L e—a)Q

where in the last step we used the conservation of probability is a 2-level system. Noticing that all terms
in the differential equation are proportional to v, we get

2¢e

B =—2r cosh(a)B(t) — m
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with & o< A;. When A\, < T, we can neglect the second term in the RHS, and the differential equation
becomes .
B ~ —2I" cosh(a)p(t).

Since I' > 0 and cosh(«) > 0V, the product B3 < 0, meaning that 32 < 0. This means that B2(t) is
decreasing, and, at the same time, lower-bounded by 0. To conclude, we just need to check the initial
condition: If the system starts in the Gibbs state, then 3(0) = 0, and the system will stay close to m(t)
when the driving is slow.

Exercise 2.6: Non-invariant Hamiltonian under time reversal
If IIg , = |x)Xx| are projectors of rank 1, then the equation
Tr (g U(6t) g U(6t)'} = Tr {lp o U(6t) g U5t) T}

becomes
| (x|U2") > = | (/|Uz) 7,

meaning that the transition probability from z’ to x equals the one from z to z’.
Consider a single spin 1/2 particle with Hamiltonian H = Bo,, which is not invariant under time reversal,
and construct an example where | (z|Uz’) |? # | (2/|Ux) |2.

Solution:
The unitary evolution is

, , —iBt/h
U = ¢—iHt/h _ ,~iBto./h _ (e . ei]?t/h)

Choosing the states |[+) = (|0) + [1))/v/2 and i) = (|0) 4+ |1))/v/2 we get

1, . , L (e
(i4+|U|+) = 5 (B_ZBt/h - ie’Bt/h) — | @ UI+) 2 = 1 +sin(2Bt/h)

2 2

1/, . | S
(HUJis) = 5 (7 B0 4 3B o | (+]Uig) 2 = #

Exercise 2.7: Positive entropy production rate

1. Show that the entropy production rate E(t) can be alternatively expressed in terms of the relative entropy
as follows:

0
ot
where the derivative is taken with respect to a fixed ;. Use this expression to show that the entropy
production rate is positive.

S(t) = ~kp Dp(#)[m(Ar)]

At

2. Confirm that the entropy production rate can be expressed as

Rz'p/ (>\t )pz’ (t)

$(t) = %B D [Rewr (A)par (1) = Rere(Apa ()] In 228 =

xx!

Prove that Y(t) > 0 by using that (a — b)In(a/b) > 0Va,b € R

Solution:

1. From the definitions, the average entropy production rate is

3= kB%SSh[p(t)] - @ Qt) = ZEI(At)%pE(t).

Remembering that the Gibbs state is 7, (\;) = e #F=(A) /Z()\,), we can write the average entropy
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production rate as

[Ssyl[p(t)] + > (log[m (A)] + 10g[Z(/\t)])px(t)] = —kp %

E:kBﬁ

ot Dip ()| (A:)]-

At

At
Discretizing the derivative we get

Dlp(t + dt)|w(\)] - Dlp(®)l= ()] _ _,  DIT(@)p(#)r(A)] = Dip(#)|w(Ae)]
dt dt

Y= —kg

with T'(dt) = I+ dtR(t) the stochastic matrix governing the evolution of p(¢). Importantly, we are
studying a system obeying local detailed, which implies that the thermal state w()\;) is a steady
state of R(t), i.e. R(t)w(\¢) = w(\;). This means that mw()\;) is a steady state of T'(dt) as well.
Thus, we can write

DT (at)p(t)|T(dt)w(A)] — Dlp(®)lw(e)] .

¥ =—kp dt =

where in the last step we used the monotonicity of the relative entropy, namely D(Tp|Tq) < D(p|q)
Vp, q proability vectors, V1 stochastic matrix.

. By using the definitions stated above, the average entropy production rate reads
S(t) = —kp Y _ pa (logps + BE.) = —kp Y _ palog (pre’7*) .

Splitting the sum into two copies and using the rate master equation p = Rp we get

) kg
Z(t) = _7 [Rmypy log (pmeﬁEx) + RyzDa log (pyeBEy)] .
zy
Notably, the quantity > Ra.ypy log (pyeﬁEy) = 0 because ) R,, = 0 since R is a rate matrix.
Therefore, we can use it to write the entropy production rate as

0= 5 [Ranoe (2557 (=)
Y(t) = —— Ryypylog | ———= | + Ryzpz lo .
(t) 2 - yPy 108 pyeﬁEy yx Pz 108 p,ePFx

Using the local detailed balance, namely
Ray — B(Ey—E)
YT
the entropy production rate becomes

. k R T RCE
%(t) = —TB [Rwypy log (%) + Ry.ps log (R—ypyﬂ

Ty TY Y yxPx

2(t) = %B >, [(nypy — Ryapa)log <%>} :

= yz Pz

Since (a — b)log(a/b) > 0 then it follows that also %(t) > 0.

Exercise 2.8: Positive entropy production rate for multiple baths

Using the results from the previous exercise, prove that the entropy production rate for multiple baths,
: Q

T,

E(t) = k‘B%SSh[p(t)] — Z Y Z 0

is always positive by generalizing the previous exercise.
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Solution:

1. We start from R = Y, R*), Q, = Y, Es(M) RS (A)py(t), ma(Bur M) = e PrB=Q0 [ Z5(B,, M)
to write

E(t) = —kp pr logpz + Z 5VEwR§:l;)py

vy

=—kp ), [Riﬁ,)py log (pmeﬁ“Em)]

vy

Calling 9y, p(t) = R (\)p(t), we have

Dlp(®)[7(By, Ar)]-
Ae|v

E(t) = —kp Z %

v

Using an arbitrarily small time-step dt, each bath contributes with

D[(I+ dtR™“)p(t)|(By, )] — D[p(H) |7 (By, Ae)]
dt

where the evolution happens due to the system being in contact with bath v. Calling T®*)(dt) =
I+ dtR™()\;) the stochastic matrix that has 7(3, \;) as a steady state (due to the local detailed
balance), we have

DT (5t)p(t)| T (5t)m (B, Ar)] = Dlp(B)m(Br, M)l _ 0
dt -

which is negative due to the monotonicity of the relative entropy. Therefore, the multi-bath entropy
production rate is always positive 3(¢) > 0.

2. Starting from the previous point, we can split the sum over zy into two copies as follows

S k v v
N(t) = —?B {ng)py log (pxeﬁ”Ez) 4 Réx)pm log (pyeﬁ"Ey)] .

vy

Since each R is a rate matrix, the quantity dow Rg;)py log (pyefBVEy) = 0, thus we can subtract
it to the entropy production rate to obtain

X(t) = —5 {ng)py log <pye[3"Ey +R§Z)pz log | =¥ 5 .

ervi-x
e 2

Since each rate matrix R satisfies the local detailed balance for the corresponding bath, namely

Rgf{,) _ ePv By
Ry) e

the entropy production rate becomes

: k Ry pa )
() = _73 R:(cz)py log ( ?(Jl,)p ) + Rg(;l:/c)p:c log ( (5)py )
vy Ry py Ry ps
<\ _ kB © @ RY)p,
vy yz Pz

where each contribution of the sum is positive.
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Figure 2: Sketch of the three-level system with the transitions regulated by the hot and cold baths.

Exercise 2.9: Equilibrium and non-equilibrium steady states

Consider a three-state system with energies Es > E; > Ej coupled to a hot (H) and a cold (C) bath. THe
following rate matrix with respect to the basis p(t) = [po(t), p1(t), p2(t)]T fixes the dynamics:

_(. .. ) ,y[eﬁcAm/Q + eBHA10/2] TeBcB20/2
R: fy[e_/gCAl()/Q +€_6HA10/2] _() I“e,BHAzl/Q
TeBcBz0/2 Le—Bul21/2 _(. .. )

with A;; = E; — E; is the energy difference while I' and v are rates. The diagonal matrix are fixed by the
conservation of probability.

1. Confirm that this rate matrix has the additive structure R =3 R®).

2. Show that, if v = 0 the steady state is a non-equilibrium state, but the heat flows are zero QH = Qc =0,
which imples zero entropy production rate at steady state.

3. In contrast, if I' = 0 and p2(0) = 0, the steady state is an equilibrium state = (3). Find 3.

4. By identifying non-equilibrium cycles in the 3-level system, argue why in 2. the heat currents are zero
while in 3. they are not.

Solution:

1. Tt is easy to see that R = R 4+ R(®) with

_(. .. ) fyeﬁHAm/? 0 _<. .. ) 7650A10/2 TePfolz0/2
RH) — ,ye—ﬂHAw/Q _(. . ) TeBrlan/2 : R(C) — 76—5CA10/2 _(. . ) 0
0 Te BrA21/2 _() Te—BcAz0/2 0 _()

2. When v = 0 the steady state satisfies

po = paePct 1 e
o BuA - s

p1 = poelH 21 :>p_eﬂcA20 + ePrA21 4 ] e

Po+p1+p=1 1

which is clearly a nonequilibrium state for So # Bpy.

The heat flows are

Qu = Z ExR;I;)Py = TAge Pula/2p TNy efrtan/2p, —
zy
Qo = Z E.R{S)p, = TAygelfot20/2py — T AygePottao/2p, =
zy
This means that, since at the steady state d;Ssp[p(t)] = 0, 2(t) = —Qu /Ty — Qo /Tc = 0.

3. When I' = 0 the system effectively decomes 2-dimensional since R,» = R, = 0 and the level-2 is
unaffected by the dynamics. Therefore, if po(0) = 0, then py(t) = 0Vt. Then, the 2D steady state

reads
BoA10/2 | B Al0/2
Do = P1 e_e/ggam/ziZ—I;HAm/z g 1 ( ePBcAio/2 + ePr10/2 >
po+p1=1 2[cosh(—ﬂ02A1°) + cosh(—’BH2A10 )] ePohi0/2 | o=Brlio/2
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whose effective temperature is given by pg/p1 = € “A10 which yields

1 eBcAio/2 +eﬁHA1o/2
7= )
0

Aq e—BcAi0/2 | ¢—BaA10/2

The heat currents are

_ YAo[2sinh([(Bc — Br)A10/2]]

2[cosh(—502A1° ) + cosh( BHQA“) )]

Qu = YArge PrA10/2py — YA pePrir0/2p,

_ ~ Aqo[—2sinh[(Bc — Br)A10/2]]
— ~vAneBcB0/2, AL pBoAi0/2,) 7210
Qc = YA Po —7YA10 D1 Q[COSh(ﬁczAw) + COSh(’BHQAw )]

4. We now sketch the two cases and consider a sequence of states forming a closed cycle 1 — x5 —
-+ — x7. Starting from any state, we write the possible transitions as u, d, u, d, with the color
corresponding to the bath that caused the transition and the letter indicating the direction, u(p)
or d(own) in energy.

_ 5

Case (2): v=0. Case (3): T'=0.
Any closed cycle in case (2) has the same number of u and d of each color because, for each
i — j, there is only one bath. For example, a closed cycle starting from 0 is ududud. To each
transition there is some energy exchange with the corresponding bath. However, d and u exchange
the opposite amount of energy. Since in case (2) n, = ng for each color, the heat currents are zero.

By contrast, in case (3) there are closed cycles with n, # ng but with n, + n, = ng + ng. For
example, starting again from 0, the cycle ud exchanges finite heat with both baths.

Exercise 2.10: Coarsed-grained Markovianity

The microstate dynamics is Markovian and completely described by the conditional probabilities p(i.|i;) =
p(iz,t + 6tliy,t) to jump from iy at ¢ to i, at ¢t + dt. Thus, the joint probability distribution of ebserving a
sequence of mesostates x,, = (p, -+ ,Zg) is

P(xn) = -+ plis,

i iag

iajn—l) o .p(iwl ‘iwo)p(il‘o'xO)PIo (to).

Show that this described a Markov process if the probability of ending up in a mesostate is independent of the
precise initial microstate, namely

i:cl i"'l

Consider the transition matrix p(i,|i;) within time-scale separation for a time step d7 satisfying F;lw <
0T K Si_li/ . Prove that
€T Y

Pliit) = Oaymipe | 1 =067 Y > Sk, | + (1= 6207 > Si, b, Thpys

z#x ky ky

which implies p(i|i;) = p(iz i) Vij, # i;. The converse in not true: Markovianity does not imply time-scale
separation.

Solution:
First, we notice that >,  p(iz,,|iz,_,) = Cxs, z,_, does not depend on i, ,. This allows us to calculate
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the sums one by one starting from the last one. The, the joint probability distribution becomes

P(Xn) = Cﬂﬁn79€n—1 e Cﬂﬁhﬂ?o Zp(imo |m0)Pﬂ70 (tO) = Cﬂ?n,mn—l T Cfﬂl@oPIo (to),

tazg
which is now decomposed in the Markovian form
P(x0) = P(@nlwn1) - - P(a1]20) Py (to).
Given that we are consider the time scale F'é1T > 1 > Sot

p(t+67) = eP07p(t) = PO H5Tp(t) = [I + 675]ef"p = [ + 67S]7*, Vp.

Thus, for any initial condition the evolved probability reads

pi,(t+01)=|1-067 Z Z Sj, io | TijePe + 0T Z Z Sy ke T2 P

2#T J2 27z k

By choosing [p(t)];, = 0s,,5, the evolution gives us directly the conditional probability p(i,|j,). Crucially,
this means P, (t) = d5, since we are preparing the state in j, at time ¢.
Therefore, the conditional probability reads

p(lm|jy) =S 5acy 1-—96r Z Z sz,im Tj|a 4 (1 = 5my)5TZSiz,ky7rk\yPy-

ZEB iy ky

Notably, this probability is independent of the specific microstate j, in the same mesostate y because of
the fast dynamics.

Exercise 2.11: Coarse-grained and strongly coupled equilibrium state

Show that the coarse-grained equilibrium state,
. e~ BF=(Mt)
(M) = Wa
and the reduced equilibrium state of a strongly coupled open system,
e BEi,

x . Z i

1z

*

coincide.
C

Solution:
We remember that the free-energy is

1 .
Fo=—ghZ, zlez;e BB

Substituting into the coarse-grained equilibrium state we find

—BEi,
*_Zize g

Wy = Z

which coincides with the reduced equilibrium state.

Exercise 2.12: Coarse-grained heat current and power

Using p;, () = mj|»(A¢) Pe(t), derive

Q) ~ Quslt) = Weglt) — Wity =73 2N p )
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where

Qult) = 3t )5 O iy = 3, Y p ),

are the coarse-grained heat flow and power.

Solution:
First, we remember that the mesostate intrinsic entropy is S, = —Zim Mo IN Ty, With w5, =
e PFis | Z . Writing the heat currents in terms of the microstates, we have

Q = E E EZIW%, ch = E E Ezzﬂ_z\xﬁjz
T iy T ig,jx
Their difference reads

Q—ch = Z Z (Eixﬂ'ﬂxﬁ'im - Eimﬁﬂxﬁjz ZZ in — Ej, 7T]|337T1x = TZ Zl <

T inje T iaja 7 Gl

> Wj‘mﬁix.

We now use m;, = 7, P, to write the difference as

Q_ch = _TZZI ( ) lex(ﬁilxpz"‘ﬂﬂxpx)

T igjz
=TY (PSe+ PuS: —0-PS.) =Ty

From the first law of thermodynamics we have that Us=Q+W = ch + ch. Thus,

S, (e
d

Q1) ~ Qeglt) = Weglt) ~ (1) = 7Y P2 p

Exercise 2.13: Intrinsic entropies and energies of mesostates

Assume \; = constant and consider a relaxation process from some nonequilibrium initial state P,(0) to the
final equilibrium state 7. Show that the entropy production coincides with the entropy production computed
in Exercise 2.2, namely

1
Y= kBSSh(WUC) - kBSSh(p:L’) + Z(ﬂ—m _pm)sx - T Zuz(ﬂ—x _px) >0

Solution:
The initial entorpy of the system is

> PlnP+ ) PS,,

whereas the final entropy is
- Z myInmy + ZT{';SI.
x x
Similarly, the initial and final internal energies are

Ui=)Y Pulle, Up=)» milhs.

Therefore, the total entropy produced in the relaxation is

U _Ui 1 *
ZZSf—Si— fT ZSSh( ) SSh —|—Z7r —P TZ(ﬂ'w—Pw)uw.
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Exercise 2.14: Trajectory description of mesostates

Show that the average (with respect to the coarse-grained dynamics) of the following stochastic definitions gives
rise to the following thermodynamics quantities

us(zy,t;) = Uy, (A1)

ss(xr,t;) = Sy, (M) — Inpy, (81)
Aqeg(t1) = Uz (Ni41) — Uy (Nis1)
Aweg (tr) = Uz, (Ni1) — Uz, (M)

where the mesostates are assumed to be z; and x;11 at times ¢; and ¢;41 respectively. Verify that the first law
holds at the trajectory level.

Solution:
The average energy over the trajectory is

<U’S xlatl Zuxl )\l $17 e 7x’n> = Zuwl()\l)pwl - U(tl)

Z

Similarly, the average entropy over the trajectory is

<83(ml’tl)> = Z (SIl ()‘l) - lnpwl (tl))p(xla T 7xn) = SSh(pml) + melsml(At) = Ss(t).

P zy

The average work at the coarse-grained level is

dwcg me t) ( Uy, (Aig1) — xz(/\l)) = dch(tl)y

while the average heat at the coarse-grained level is

<dch Zuxl+1 >\l+1)pxl+1 tl+1 Zuxl /\l+1)pml tl Zuxl >\l+1) (prl (tl—i-l) Dz, (tl)) = dch(tl)

Tiq1 ] ]

The first law on the trajectory level reads

dus = us (141, tip1) —us (@1, t1) = us(Tig1, tipr) —us (1, ter) Hus (21, tiyr) —us (1, tr) = dgeg(ty)+dweg ()

Exercise 2.15: Integral fluctuation theorem = 2794 law

Prove that the integral fluctuation theorem for entropy production, namely
<e_a>xn =1,

imples ¥ = (0)x, > 0 and the existance of trajectories x,, with o(z,) < 0 unless o(x,) = 0Vx,.

Solution:
Noticing that the exponential is a concave function, namely

e 1= < e 4 (1 — a)eY Va € [0,1],Vz,y € R,
we can use Jensen’s inequality:

1= (e %)y, >e (D = (5), >0.

Suppose that there exists a trajectory x, with positive entropy production o(x,) > 0. If now no
trajectory has negative entropy production this would violate the integral fluctuation theorem. Therefore,
unless all trajectories produce zero entropy, there exists at least one trajectory with negative entropy
production.
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Exercise 2.16: Crooks’ lemma on mesostates

Consider a stochastic trajectory of mesostates x,. Use time-scale separation to show that Crooks’ lemma,
namely

i POl0) _a(xn)

ptr(le ‘-rn) T

generalizes to

i Pl Se) (S (i) = S (0] 82, () 00
tr\Xn [Ln 1—0

Show that this imples

In M = 0(xn) = Ass(tn) — Baeg(Xn) — z_:[&m(/\m) = S (M)
ptr(xn) =0

Solution:
The first steps are the same as in Crooks’ lemma: first we split the probabilities into each step,
p(Xn|330) _ p(xnlmn—ly /\n) e 'p(331|330, /\1)
ptr(xmxn) p(zolw1, A1) -+ P(Tr—1]Tn;s An)

Then, we reorganize the product and consider the single step
p(xg|zi—1, ) _ Opim 4 T bel®l-1()‘l)
p($171|$l7)\1) 51’1,901—1 +R4E1—1Iz ()‘l)

If &, = x;_1 the ratio is clearly 1. However, if x; # x;_1 we cannot use local detailed balance directly on
R because it is the emergent dynamics. In fact, R describes the transitions between mesostates regardless

of the microstate,
P Z R@yP Z Z S’Ilyp’y Z Z Siziyﬂ—iywpy

y Zz,ly Y i:c:iy
from which we identify R, = ZZI i Si,i,Ti,|y- Crucially, S; ;, satisfies local detailed balance. Therefore,
—BE; E; —E; ),—BE
Ra;y _ Ziziy Sia:iyﬂ-iy|y Z ZZI’Ly Za:'Ly A v Z Zzzz ly’bz ( v x)e A

- S - e—BE;, . e—BE;
Ryx Z]m]y Sjy]a:ﬂ-]m‘x Z z]w] ]y]ze e Zy Z]z]y SJsze FEjq

fro, which we read
Ray _ 22 _ p(r,-F2)
Bos 2y
where we used the free energy F, =U, — TS,.
Thus, the ratio between the single step conditional probabilities reads

p@lri1, \) o= By ) —Uay_, (W) =Sy, (M) +82, ()

p(xi—1|x, A1)

and we can write the mesolevel version of Crooks’ lemma as

f(iﬁ'fi )> = —Beg(%n) + [So, (An) = Szn_y (An) + -+ + Sz (A1) = Sz (A1)

= e_ﬁdch(tl)€7811_1 (Al)+SIZ ()‘l)

In

n—1

= _ﬁQCg(X’n) + Sﬂcn (/\n) - [Sﬂcl (>‘l+1) - 'Sﬂcz (Al)] - Swo (>‘1)
=1
n—1
= _BCICg(Xn) + Sa:n ()‘n) - 8120()‘0) - Z[Swz ()‘l+1) - S-Tl ()‘l>]
=0

Choosing the initial condition of the backward process to be equal to the final probability of the forward
process, namely

Dr (T, 0) = p(xn, tr),
the logarithm of the ratio between the trajectory probabilities is

n—1

p(xn) p(Xn|o) p(zo,0)
In———=1In + In = Asg(t BGee(%1) 21 (A 2 (A
ptr(XIL) ptr(x;rl|xn) p(l'nytn) ( ) g ; l +1 z( )]

34




Exercise 2.17: Observing negative entropy production

Suppose the distribution P(o) is Gaussian with mean ¥ and variance §%. Show that the integral fluctuation
theorem fixes the variance to the value
6% = 2kpX.

Show that this imples for the probability of observing a negative stochastic entropy production

[ dnpio) = Lere (W)

2

where erfc is the complementary error function.

Consider two ideal gases in a box at the same temperature and pressure initially separated by a dividing
partition. After removing the partition, the average entropy production after the gases have finished mixing
is 3 = kgNSsn[{V1/V,V2/V}] with V; (V3) the volume initially occupied by gas 1 (2), V = V; + V4 the total
volume and N the number of particles. Estimate 3 and the probability of observing negative entropy production
for a macroscopic system, N ~ 1023,

Solution:

The Gaussian distribution reads 1 )
_ (c—X%)

e 252
\V21o

and the integral fluctuatuin theorem states (e~?/¥8) = 1. Combining them we get

P(o) =

1 2 52 | 5% &4
1 282 L 6°  5°
% —3/kp dx 262 <:C + kB+k2B sz>

V2o - V21w V2o c

which results in

do (e=%)2 dx 2
= e olkBem g = | L o~ (@4E) kB

1 = o~ S/kn+6%/(2k3) / 1/?—5@7‘1’2/(252) — ¢~ S/he+8%/(2K5) oy 62 — of .
Y[y

The probability of observing negative engtropy production is

/ doP(o / do _(o=2? I—*/ 75 da: 7 = Cdr _p» 1 el /2
a = Zeric | =4/ — | -
oo V210 \/_ 2 2V kg

When the volumes are comparable, the average entropy produced ¥ ~ 1023, then,zza rough overshoot of
the probbaility of observing negative entropy production is > ~ 107>/2 ~ 107%™ an incredibly small
number.

Exercise 2.18: Crooks’ lemma with multiple heat baths

Generalize Crooks’ lemma to a sistem in contact with multiple heat baths.

Solution:

When dealing with multiple heat baths it is important to require the knowledge of which bath cased the
stochastic jump. This means that, together with the list of system states x;, there is also a list of baths
v;. Then, the ratio between the forward and the backward conditional probabilities is

p(Xn|z0) _ p(@n|Tn_1,Vn, An) - - p(21]T0, 11, A1)
pue(xhlzn)  P(@olTs, v, M) - p(Tn1|Tn, Vi, An)

We now focus on the ratio of probabilities in a single step

p@lzi1, v, \) Oy StRE () _ PulBay O =Be, Q0 _ =By dau, (8)
p@—ilen, v, N) 5,0+ 6tRYY 4 () ’

where the notation [- - -], means that the energy was exchange to bath v. Multiplying all these ratios
together and taking the log we find Crooks’ lemma formulated for multiple heat baths:

In ————— (Xn |x0 Z /BVqV xn

Dtr (Xn|1'n
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where ¢, (x;,) is the heat exchanged with bath v during the trajectory x,,.

Exercise 2.19: Mathematics of integral and detailed fluctuation theorems

Integral and detailed fluctuation theorems can be trivially constructed if three mathematical requirements are
met:

i) First, we have two probability distributions p(z) and ¢(z), = € X.
ii) Second, let p(z) =0 < ¢(z) = 0.
iii) Third, assume we have an involution f : X — X, which satisfies ()" = .

Defining the ‘entropy production’ o(z) = In[p(x)/q(z")], show that it always satisfies an integral and detailed
fluctuation theorem of the form (e _"> =1and P(0)/Q(—0) = e, with P(o) =, p(x)d[c —o(x)], Qo) =
>, 4(2)d[o — 0w(2)], where o (2) = In[g(z)/p(aT)].

Solution:
Let’s start from the integral fluctuation theorem:

ol
= Y Lo S geh -1

z€supp(p) ) z€supp(p)

because p and g have the same support and t is a bijective map.
Now, let’s move to the detailed fluctuation theorem:

Qo) = Zq(x)d o—0o(x Zp e (® Olo—ow(z)] = € Zp(a:)c?[a—otr =e Zp Olo+o(x)]

x

from which the detailed fluctuation theorem Q (o) = e? P(—o) follows.

Exercise 2.20: Which work works?

Consider a single particle with position vector q(¢). If a force F(q) acts on the particle, the work done along
the trajectory 7 is

w'(y7) E/ F - dq.
o

Use Newton’s law F = mq to deduce that w’ = AT, with T = m¢?/2 being the kinetic energy of the particle.
Assuming that the total energy is T + V(q), with V(q) potential energy, show that

w(y") —w'(y7) = AV.

This means that w’ considers only the kinetic energy as the internal energy of the particle.

Consider the compression of a gas in a cylinder by a piston. If P is the pressure of the gas in volume V,
the work done is W = — [ PdV. Let X be the position of the piston with mass M, which obey’s Newton’s law
MX = > Fi + Fext(A\¢). Here, Fj is the force excerted by the i-th particle on the piston.

Show that the work done on the gas is W = — [ PdV = — " [ F;dX. Derive that W = AE; — ATpiston,
where Ei. is the total energy of gas and piston. Deduce that W is identical to

w(yT) = H'"; A, — H / thtaH;At a

if the system Hamiltonian contains the kinetic energy of the gas particles, the particle-particle potential and
the particle-piston potential.

Solution:
The variation of the kinetic energy is

AT:/ Tdt:/ mq.thz/ F-dq=uw'(vy").
0 0 el
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The work done along the trajectory corresponds to the variation of total energy:
w(y") = AT + AV =w'(77) + AV.

Let’s consider now the gas in a cylindrical volume. The work done on the gas is

W:—/PdV:—/PAdX:—/ZFidX

where A is the area of the piston. Crucially, the gas pressure is given only by the forces exerted by the
gas particles. Then, the total work is

W = _/ [MX - Fext(/\t):| dX = _ATpiston + AE‘tot-
If the system Hamiltonian is Hg = 1}, + V,, + V,p, with T}, being the particles’ kinetic energy, Vj,, the

particle-particle potential, Vi,p the particle-piston potential, then the global Hamilonian Hio, = Hg +1p
with Tp being the piston’s kinetic energy. Then, w(y") = AHg = AHot — ATp.

Exercise 2.21: Thermal state in the weak coupling regime
Consider the classical system-bath Hamiltonian
Hsp(Tsp;At) = Hs(Ps; At) + H(T'g) + Vsp(I'sp)-

In the weak coupling regime, namely when Vsp(T'sp) < Hs(T's; \t), Hg(I'p), show that the canonical ensemble
of the system-bath composite factorizes as

msB(lsp,A) = 1s(L's, \)m(I'p).

Solution:

B 1 e_ﬁHSBN 1 e BHs(Ts;A) 1 o—BHB('B)
"B T WNstNs  Zgp | hNs  Zg  hNe  Zp

= Ws(rs, )\)WB<FB)

Exercise 2.22: Work fluctuation theorems for open systems

Consider a driven system weakly coupled to a bath prepared in a canonical ensemble at temperature T'. Let
p(w) [ptr(w)] be the probability distribution of the fluctuating work, namely

T . OHg(TL: A -
w('yT):/O dt)\t$:w('ys),

in the forward [backward] process.
Prove that, for any driving protocol A,

=€

—Bw _ _—BAFs p(w) B(w—AFs)
€ =e 9 N )
< >'Ys ptr(_w)

where AFg = Fs(At) — Fs(Ao) is the change is the system’s equilibrium free energy with respect to temperature
T.

Solution:
Let us first prove the detailed fluctuation theorem. The probability in the forward process is

p(w) = / dr%dT%6(w — w(v5)ms (0%, Ao)ms (T%).

Thanks to the weak coupling approximation, the bath traces out immediately, and we are left with the
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system only.
e—ﬁHS(F%J\o)

Z/drgﬂw—w(ﬁ’g)]ﬂs@%a)\o)Z/dr Sfw (HS(FE,/\T)—Hs(F?g,)\o))]W

dl’ e AHs(T5.2r)
ebv 55w — (Hs(T'g, A Hg(T% \o))]————————
/\0 /hNS S( S» ) S( ) 0))] Z()\T)

= fw=AFs) /d@l“ga[w — (Hs(OT'g, A\r) — Hg(0¢™'T'g, X)) ]m(OL7, A;)
with © being the time reversal operation, and gbf% = I'; being the evolution of the system trajectory.

Crucially, this evolution is linked to the time-reversed one through ©¢~! = ¢0. Using this and
relabeling the phase space, we get

plw) = ?=27) [argsfo — (Ho(T3,Ar) - Hs(@ul$ A)n(T® ) = =25 )pi,(—w)

which is the detailed fluctuation theorem.
From the detailed fluctuation theorem the integral one follows directly as

(e = [ dupw)e = [ dupu(-w)e 87 = 287

Exercise 2.23: Work fluctuation theorems for open systems: The return of Markov
and LDB

In the framework of a classical Markov process obeying local detailed balance, consider a forward and backward
process by demanding that the initial state of the forward and backward process is described by a canonical
ensemble, i.e. using m,(Ag) and 7, (A¢), respectively.

Use Crooks’ lemma to derive
n p(xn)  w(x,) —AFs

ptr(le) kBT ’

where w(x,) = u(zn,t,) — u(xo,0) — ¢(x,) is the stochastic work during the forward process. Use this result
to prove Exercise 2.22 after identifying v4 with x,,.

Solution:
The ratio between the probabilities of the forward and backward process reads

PBn) _ P(%n|0)Tay(A0)  Crooks’ ,—pg(x) Z8(An) —B(Euy (A0)=Eep (Mn)) _ (Bw—AFs)
Per(xh)  pur(xhlzn)a, (An) Z5(%)

The probability of obsering the work w is then

w) = Y ow—w(x)lp(en) = 277N 7 d[w—w(aen)|pes () = 2 7EF) Y 7 blwtwe () Ipe (x])

Xn Xn

from which follows the detailed fluctuation theorem

plw) = eﬁ(w*A}'s)ptr(_w)_

Exercise 2.24: Nonequilibrium free energy and relative entropy

Given the nonequilibrium Fg and equilibrium Fg free energy with respect to the same temperature 7', namely
FsEUs—TSs, ]:S:_kBTanS,

prove that
Fs(t) — Fs(At) = kgTD[p(t)|[m(Ae)] = 0
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Solution:
Let’s start from the nonequilibrium free energy:

FS:Z( zpz—|—k]5;Tpllan)—kBTZ:pzln (pl )—kBTZplln< )—kBTan.

Moving things around we have
Fs — Fs = kgTD[p(t)|m(\)].

Exercise 2.25: Equilibrium internal energy and entropy at strong coupling

At strong coupling, the Hamiltonian of mean force is defined through

—BHE(Ts;N)
T gy =22
Zi ) Zp

Wg(l—‘s;)\) = /dFBﬂ'SB(PSB;A) =
Show that, in the classical case, the Hamiltonian of mean force reads
1
Hi(Tg:\) = Hg(Tg; \) — Eln/drBe*BVSBWSB)wB(rB).

Postulating that the equilibrium internal energy and entropy are obtained, in analogy with standard statistical
mechanics, as

Us(\) = B[ﬂfs( ) Ss(A) = kBﬁQ% 5(A),
derive
U5 = [ drsms (s ) [H5(Csi0) + 5 5T
SH(\) = /dl“swg(l“s;)\) {—m [RNs I e (Ds; N)] +628BHS(FS,>\)}

Solution:

From the definition,

—B(Hs+Hp+Vsg)
— BT = i 2 ln/dI‘Be =In Zsp _ InZgp — BHs + ln/dI‘Be_’BHBe_BVSB
Z3B Zp
a from which we get
H:=Hs — %m dT pmgePVsE,

Then, we remember that the equilibrium free energy at strong coupling is defined as
1 2
Fit=—kpTlhZ} = —Eln/dFse_BHS.

Now we can take the derivatives with respect to 3:

1 g 0 [ 0

Similarly, for the entropy we get

ngkB,BQ[ In zs+5u5] :kB[an;i—i—ﬁug]:kB/dsts BH% +1In zs+ﬁ2 35 ]

32
which gives

S5 :kB/dst* [—m[thf *]+528ﬂ }
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Exercise 2.26: Extensivity at strong coupling

The system S is split into two subsystems, X and Y, such that S = XY. Let us introduce the partition
functions 2% = Zxyp/Zyp and Zy = Zxyp/Zxp. For both partition functions we have

Fx =Fxvys —Fvp, Fy =Fxve— FxB.

To show extensivity, one needs to confirm that 7§ = F%y = Fx + Fy. Show that this is only possible at
weak coupling, where one can neglect the interactions Vxy, Vx g, Vy 5.

Solution:
The entensivity in F correponds to the factorization of the partition functions, namely

Fxy =Fx + Fy © Zxy = Zx 2.
Now, the partition functions are

Z = M—WEBe—,@(Hx+Hy+HB+ny+VXB+VYB)
HKWIE hNx+Ny+Np

dl'xdI’
ZxB :/hN§+N§e*B(Hy+HB+VXB)

and to get the decomposition
ZypZxp = ZBZxvB

one needs to neglect the interactions.

Exercise 2.27: Integral fluctuation theorem at strong coupling
The stochastic entropy production at strong coupling is defined as
75(v5)
T
Show that, if the initial state is in the form psp(T'sp;0) = ps(Ts;0)7(T'5|Ts), with

J*('yg) = Asg —

7T(F ‘F )_ WSB(FS,FB;Ao) B e~ BlHB(TB)+Vss(I'sB)]
BES)= T Tgiho)  [dlpe PHsTo) Vs Tsn)l’

the stochastic entropy production can be written as

ps(Tg:0)mp(THTS)
ps(Ug; )mp(I'EI0S)

Using Liouville’s theorem, derive the integral fluctuation theorem at strong coupling, namely

o*(t)/kp =1n

—o* /k
(e /kB) = 1.

Solution:
Let us first recall all the necessary ingredients:

s5 = — [k ps(T; )] + B2 H5(Ts; M), s = H5(Tls; M) + BOsHE(Tls; Ar)
g5 = Auy —w, w=Hsp(Tsp; M) — Hsn(Tg; do)
1
H%(Tg;\) = Hg(Ts; \) — Bln/dFBe_ﬁVSB(FSB)W(FB)

Let’s start from the system’s entropy and energy

Ass =1In 25(((2)) + B20sAHE, Auly = AHL + BOgAHE.
S
From this we can write the global entropy productions as
0 0
o = 5O | g w1 g — A — posams) = m 250 4 gw - Amy).
ps(t) ps(t)
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Now, we write the difference of the Hamiltonian of mean force as

1 Zps(T
H3(Ts; M) — H5(Tg; M) = AHg — < In <—B|S( 5)) . Zps(Ts) = /drBei'B[H(FB)+VSB(FtSB)].
5

B Zps(l'Y)
Substituting into the total entropy we get
. ps(0) (ZBS(Fts)) <PS(0)7TB(F%|F%)>
c"=1In + B(AHsp —AHg)+In|{ =————< ) =1In .
ps(® TP AMsn Al T 7 o) ps (O (THITS)

We can now use this expression for the entropy production combined with Liouville’s theorem to prove
the integral fluctuation theorem. In fact,

(= /*5) = /dF%dF%Ps(t)WB(FtBWg) =1

Exercise 2.28: Entropy production rate at strong coupling

Using the relation 0,H§(\¢) = 0:Hg(\¢), derive

0
=—kp o 7|, D[Ps(Ts; t)[rs (s Ae)]-
Solution:
We have seen previously that
. ps(0) .
o' =1 + B(w — AHY).
ps(t) ( 5)

Since ¥* = (o*), the time derivative gives
= 0i(=Inps(t)) + B(8i(w) — 0:(H5(A:))) = 0:Ss + B0, (w) — PO (Hy).

Now, let’s look at the relative entropy.

0
= E D[ps(rs, )lﬂ's Fs,)\t /drsps 11’1— = /drspg lnps +6HS)
A

i

— 055~ 8 [ dUs OulpsH3) — psOuts) = 0Ss — BOHS) + (OuHs)
Recognizing that the average work is
(w) = /ds(@tHS(s» s Bu(w) = (8, Ha),

we easily see that the two expressions coincide.

Exercise 2.29: Strong coupling from coarse-graining: Hamiltonian of mean force

Consider the system X strongly coupled to Y C B such that XY is weakly coupled to R = B\ Y. The energy
of XY are
Exy()‘t) = Ea:()‘t) + Ey + V.?cyy

and the equilibrium state of XY (which is reached thanks to the weak coupling to the residual bath R) is

Derive the Hamiltonian of mean force

1
EX(\) = E, — 3 In(e PVav)y

and the following relation

E; (M) = Fo(M) = Fy,
where F,(A\:) = —kpT In Zy e BEay(Ae)
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Solution:
Starting from the thermal state of XY, the Hamiltonian of mean force is defined through

e_ﬁEacy 6_ﬂE;

* § —
— Ty = Wwy = —Z*
y X

Moy = Zxy

from which we read

Z5 Z%Z
—BE; =In = X 4 1n (e‘BE”” Ze‘ﬂ(E”V“‘)) = —BE; +1n (Z e‘ﬁvﬂ”ywy> +In (—X Y) .

Z
XY " " XY

Since the last term is just a constant, we can disregard it and we are left with
* 1 —BV,
E=FE,— E In(e™""=v)y.

Alternatively,

1 e BBy
—— —BE: —BVa - _
E; = 6ln<e E e v Z >— kT

Yy

=F — Fy

In (Z e_BE“’9> —In Zy

Y

Exercise 2.30: Strong coupling from coarse-graining: internal energy and entropy

Starting from the setting of Exercise 2.29, assume that Y evolves fast, such that one can apply time-scale
separation. This means that p.,(t) ~ 7,,p.(t). Using the definitions of stochastic internal energy and system
entropy,

ug(t) = Ex (M) + Z(sz + Ey)mye(Me),  s2(t) = —kpInp,(t) — kg Zwy‘m(/\t) Inmy . (Ae),

derive

Uz (t) —uz(t) =Uy, sz(t) —s3(t) = Sy.
Here, Uy and Sy are the equilibrium internal energy and entropy of Y alone, and w},s) follow from the
definitions of Exercise 2.25.

Solution:
From Exercise 2.25 we have

Us = [ dvsps (Hy +805H3), S5 = [ dTsps [~1n (h¥*!ps) + 52013]
from which we have the stochastic internal energy and entropy at strong coupling
uy = H + BOsHS, s5=—In (kN7 pg) + p20sH.
In the previous exercise we have seen that £} = F, — Fy, so we have
Uy, = (Fo = Fy) + BOs(Fo — Fy) = 9[B(Fo — Fy)]-
The derivative of F, gives

Zy Eﬂﬁye—ﬂEmy
Zy e—BEzy

>y (By + Vay e B EutVer)
5, e P BV

=FE,+ Z(Ey + Vi )Tyje = Uz
y

85 [ﬂ]:gc] = =F,+

Therefore
Z Yy Ey e PEy
>, e P

Similarly, the stochastic entropy at strong coupling is

Uy — u; = 85 [ny] = = UY

sy =—Inp, + 6285(}} — Fy).
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The ([-derivative on F, acts as

1 1Y, Egye™PPe
35]:z == In ( 6_5E$y> ——BE
B Zy By, e PP
E 1 E
——+—1In E e PBy+Vay) E (Ey + Vay) Ty |z
B ( 5 B 2T

1
= 5_ Z B(Ey + Vay) + ].IlZy|m] Tyle = —E Zﬂ’yu 8 e
y Yy

To calculate the derivative of Fy we can simply set E, = 0 = V4, in the previous calculation, and leads
to 3203 Fy = Sy.
Therefore, the difference between the entropies reads

Sy — Sp = —5285]:1/ =Sy

Exercise 2.31: Strong coupling from coarse-graining: non-separable time-scales

Let Xxvy(t) = [W(t) — AFxy(t)]/T be the entropy production emerging from the joint description of X and
Y in weak contact with the residual bath R. Here, Fxy(t) = >, Puy(t)[Ewy(Ae) + kpT'Inpy,(t)] is the
nonequilibrium free energy.
Assuming that the initial state is ps, (0) = 7,|,p2(0), show that
Z*(t) - ZXY = k/’BD[pa:ylﬂ'yMp:c (t)] > 07

where X*(¢) is the entropy production calculated in the framework of the Hamiltonian of mean force.

7

Solution:
Let’s start from the relative entropy:

D[pzy(t)|7ry\xp1(t)] = _S[pmy( )]+ Slp. ()] + szy B(Ey + Viy) + 1nZY|x] .

Using the definition of the nonequilibrium free energy, Fxy = Uxy —T'Sxy and the entropy production
Y.xy, we have

D[pxy(t)|7ry|a:px(t)] +3xy = /BW + /BFXY(O) + S[px(t)] _ ﬂ(Eac(t» + Zp:c(t) In ZY|1
= BW + BUxy (0) = Slpay (0)] + S[pa(t)] = B(E=()) + Y pa(t) In Zyy,

= BW — BAUx + B> _ pe(0)myo(By + Vay)+

wy

+> " pe(0)myps [Inpa(0) — B(Ey + Vay) — In Zy(s] + Slpa ()] + pr t)In Zy,

wy

= B(W — AUx) + ASx + Y _[p=(t) — pz(0)] In Zy,.

Now we can move to the entropy produced in the Hamiltonian of mean force framework, namely
X" =(07) = (As; — Bq;) = (As; — BAug + fw)

Crucially, the stochastic entropy and energy in the Hamiltonian of mean force read

2 * * * * * 1 ZY‘CB
—Inp, + B8°0sE,, u,=FE,+B0sE;, E,=FE,— —In ,
B Zy
such that the difference
* * * ZYl:t
sy — pu, =—Inp, — E, = —Inp, — fE, +1n
Zy
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Finally, we can calculate the average as

ZY|m
Zy

(0*) = ASx — BAUx + Y _[pz(t) — p=(0)]In + BW.

Since Zy does not depend on z, it cancels out, and we are left with the same expression as
DI[pey(t)|myep2(t)] + Xxv, thereby proving the relation we were looking for.

Exercise 2.32: A lower bound on entropy production

The entropy production of the joint system XY can be expressed as

Sxy (t) = kpD[p(xyn)|pe: (xyl)]

by means of local detailed balance (Crooks’ lemma). Here, Xy, is a trajectory of microstates in XY and xy],
is the corresponding time-reversed trajectory.
Defining the ‘trajectory entropy production’ as

Etmj (t) = kBD[p(Xn)|ptr (XIL)]7

prove that
Siraj(t) < Xxy(t)
by constructing a stochastic matrix 7' that maps py, — p, and use the monotonicity of the relative entropy,

namely
D[Tp|Tdq] < D[p|q].

Solution:
The most general stochastic matrix relating the probabilities p,, and g, is

qz = ZTx’,xypacy-
zy

Choosing T’ zy = 044 is a valid choice for a stochastic matrix. Indeed, all entries are non-negative and
> 0272 = 1. The outcome of this choice is

Pz = szy~
zy

Now that we have the transitio matrix that maps the joint trajectory into the marginal one, we can use
the monotonicity of the relative entropy:

Sxy (t) = D[p(xyn)|pe(xy})] = DITp(xyn)|Tpe (xy])] = Dlp(xn) e (x])] = Seraj (1)

Example 2.1: Free energies of complex molecules

Using the stochastic work, namely
w(v5) = Hsp(T5p, Ar) — Hsp(Tsp, Ao)

we can derive

o 0 Bu(+D) 0 e~ BHsp(Tsp,Ar)
/dFSBCS(FS*Fg*)WSB(FSBa>\0)e YA :/dFSB(;(FS*Fg)

Zsp(Mo)
e—BHsp(LspT,Ar)
Liouville’s theorem — = /ngB(S(FS -Ty)———————+—
Zsp(Mo)
—BlHp (T')+Vss(Ts,Tp)] Z:(0) .
— —ﬂHs(Fsv\T)/dl"Te — 7%5(Ta: A S\AT) _ ¥ (Te: N e BATS
e ™ yAT) Z% ™ yAT)€ .
B ZSB(/\O) S( S )ZS(AO) S( S )

This can be summarised as
m5(Dsi A e PA75 = (5(Dg — TG)e PRy .

S
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Interestingly, integrating over I'g gives the integral fluctuation theorem at strong coupling.
Let the Hamiltonian of mean force be

~ k
H(Ts; M) = H5(T's) + 5(33 — A%,

with H%(T's) being the undriven Hamiltonian of mean force. Taking the distribution d[z’ —z(I's)] and integrating
over I'sg we get

e BHS(Ts A7)

Z5(Mo)

e—BH5(Ts Ar)

/ rsdla’ — o(T) 5 _ B ) / drs8[' — ()]

from which we can define @(v%) = w(v5) — £(2(I's) — A,)? and write

efﬁﬁg(FsJ\T)

/drsé[xl - I(Fs)] Z;()\())

- / AT ]z’ — o(Ts))(0(Ts — T5)e= P05 .
Deining the equilibrium free energy at fixed extension z’ as

F5(a') = —kpTIn Z5(x'), Z5(a') = / dg[a’ — a(Dg)JePHETS),

we have

Fi(a') = —kpTIn(d[a’ — 2(TF)]e PPO5)) 1 + Fi(Xo).
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3 Quantum Thermodynamics Without Measurements

Exercise 3.1: Time-dependent Hamiltonian from a time-independent one

Consider an atom interacting with a single mode of the electromagnetic field, whose dynamics is described by
the Jaynes-Cummings Hamiltonian

1Y)
Hjc = - 0= + hwa'a + hg(ora+alo_).

The atom is a two-level system with energy gap h{) between the ground (|g)) and excited (|e)) states. The EM
field is described by a single harmonic oscillator with freugney w and ladder operators a,a’. The atom-field
interaction with strength g describes emission (absorption) of a photon by the atom using the lowering (raising)
operators o = [g)e| (o4 = leXg]).

Assume that the atom is on resonance with the EM field, Q = w, and write the unitary time evolution
operator in the interaction picture.

Consider an initially pure state of the form [¢(0))¢ ® |a)y,,, where [¢(0)) 4 is an arbitrary atom state and

@)y = el /2y 2% |n) is a coherent state of the field with amplitude o € C. For simplicity, assume a > 0.
Show that if the amplitude of the coherent state is large enough, a > 1, the EM field acts as a work reservoir.
Calculate the time-dependent Hamiltonian acting on S.
Assuming that the atom is initially in the ground state, calculate the proability of finding the fild at time ¢

still in the same coherent state |a).

Solution:
The interaction picture is useful to work with simpler Hamiltonians. It is based on using a different
reference frame, which is reached through the unitary transformation Uy as

) = o) — 010 = Do ) — 00 v} = — (o] = F0US ) U lo) = -3 116).
Choosing Uy = exp(itHy/h) we have
H = UpHU} — UyHoUJ = Uy(H — Ho)Uy.
Choosing Hy to be the non-interacting Hamiltonian Hy = hQ(o. /2 + afa) we are left with
ji- eitQ(az/eraTa) (hg(a+a + aTa_)) e—itQ(az/Q—Q—aTa)_
To write this in a clean way we have to calculate some (anti-)commutators. Let’s start from the Pauli

matrices:
le) = 1 lg) = 0 (1 0 &+ (0 1
— 0/’ g)= 1)’ 0, = 0 -1/’ 0O =0_ = 0 0

0,04 =04, 040,=—04, 0,0_=—0_, 0_0,=0_

From which we have

; s (iz)"o?  (=1)™(ix)" o (iz)™  (iz)™ ;
e o em = Z n! o+ m! - = Z al Tl 7
nm nm
eizozo__e—izaz _ (O_+82im)T — G_S_Zim.

Now, let’s move on to the bosonic operators [a, a!] = 1.
aa’a = (afa +1)a = a(a’a)” = (a'a+ 1Da(a’a)"* = (a'a +1)"a
afaa’ = a'(1+a'a) = (afa)"a’ = (aTa)"ta' (1 + afa) = aT(1 + afa)?

From which we have

iz (ata)n _iz)(ata 4+ 1)
iza'a  —izata _ izata Z ( Zx)n(a a) __ izata Z ( Z(E) (a a+ 1) —iz
a —_—————— = € a

e ae =e a=c¢e
n n!
n n

etza aaTe iza'a _ [6 a]’[ _ em:a‘[

Using these relations we can write the Hamiltonian in the interaction picture as

H = hg(o1e®ae™™? + o_e 0T = hg(oya +alo_).
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The unitary time evolution operator in the interaction picture is

G(t) = o=#A/h — oito(osatalo)
Using the matrix representation on the atom Hilbert space, the Hamiltonian becomes
F 0 a
H = hg <an 0) = hgA.

Notice that A has some nice powers:

A2_<aaT O>_<N+1 0>:>A2”—<(N+1)n 0>’ A2"+1—< 0 (N—&—l)”a)'

0 ala 0 N 0 N© N7qgt 0

Thus, we can expand the time evolution operator is series as

> S *Ztg — (—itg)*" 2 — (—itg)* ! 2n+1
= A" A%t
ve 7;) T; @n)! +7§ @n+ 1)
= (N+1)™ 0 = i(=1)"l(tg)>"*t /0 (N+1)"a
- Z 0 o)t Z ngt
— vt (2n +1)! N"a 0
_ cos(tgv' N + 1) 0 S.m(thiJerwa
0 cos(tg\/> Sln(tgf) 0

— cos(tgVN T 1) [e)e| + cos(tgVR) [a)g| — (Sm(tgv StV 1) oxgl + af SRV + D) M|g><e|)

a
VN +1 N +1

We now consider the initial state in the separable form [¢(0)) ® |«) with |«) a coherent state. Remem-
bering that the ladder operators act on the {|n)} basis as

aln) = viln—1), afln)=vaFiin+1),

we notice that

0 n 0 n
o 2 6%
ala) — e lal?/2 —a|n) = e lal*/2 ——|n—-1)=ala).
2V DDy ey

We can this when calculating the reduced state after the evolution took place:

ps(t) = Trw {U(t) [ (0)a)y(0)al UT(t)} = (nlU()]a) [$(0))(0)] (T ()In)

n
with

sm(tg\/n +1)

(1T Ol = (costean 1) llel +cos(tam) ol - =2 )

+ (—ivaZ I el ) o 1ja).

Therefore, the sum in the reduced density matrix pg(t) will contain terms proportional to
| (n]a) 12, ] (n — 1|a) |?, (a|n — 1) (n|a) and the complex conjugate. Since the scalar product (n|a) =
e~lal®/242 /v/n!, the probability of finding n photons in the coherent state |a) is

|e><g|) e

Cu|2(n 1)

po = | (ala) 2 = el 1287, = Y=o 22'
n— 1

To calculate the variance we can look at

_ — lal® 4 |04|2(n 2)_ 4 2\ _ 2 4 2\ _ 2
(nn—1))=e Z o = (n°) =a”+a” = (An®) = o”.

Since the ratio between the variance and the mean photon number is 1/a, the photon distribution
becomes peaked around its mean at large ov. Therefore, when taking the sum over n in the partial trace
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ps(t) we can approximate it with the contribution of the mean value (n) = a2. Additionally, since the
Poisson distribution is highly peaked around its mean, we can approximate everything but the Poisson
distribution p,, with the mean value:

(nlU(t)|a) — [cos(tgar) (le)el + lg)gl) — isin(tga) (|eXgl + [gXel)] (nle)

~ cos(tgar)  —isin(tga)) (tga)®* = (tga)? 1
(nU@)|e) = (nlo) (—i sin(gtga) COS(tggz) ) = {nla) Ek:(_l)k ( (2k)! = (2k +1)! Jz)
Noticing that - " o . ok
—ixo, __ (—ZZL‘) Oy _ (_1) £U2 (_1) 21,‘2 +
¢ _zk: k! _zk:< C I ] "’)

we can write the matrix element of the unitary evolution as
(U (t)]a) = (na) e~ 97
Thus, the reduced density matrix reads

ps(t) = Y| (nla) Pe=#9%% [1h(0)}h(0)| €97 = e7*9°%= [3h(0)}3h(0)] 9=

This gives the effective Hamiltonian V = hgao, in the interaction picture. Going back to the Schrédinger
picture with V' = UJVUO we get

VvV = Ho—i-e_itHo/hthéUz@itHo/h _ H0+hgae—itﬂaz/2(o.++o__>eitﬂaz/2 _ HQ—FFLQOJ (O_+€—iﬂt+o__eiﬂt)’

where we used the commutation relations proved before. Therefore, we have the effective time-dependent
hamiltonian acting on the system:

hQ A A
Heg(N\) = 0= + hga (a+e*mt 4 J_e’m) .

Conversly, to find the probability of finding the field in the same state we need to trace over the atom’s
Hilbert space:

Pat) = Tra {(a| U (t) lga)gal O (1) a) }

Remembering that

(115 0lge) = (costtanm o) ~ =2 Dale) ) (nla)

the partial trace over the atom’s Hllbert space reads

palt) = Yo e ST (ala) (alm) [costy/m) cos(tg /) + o

n,m

,sin(tgy/n + 1) sin(tg\/m——i-l)]
Vn+1 vm+1 |

Once again we use that the Poisson distribution becomes peaked at the mean value and approximate n
and m in the square brackets with o?, their mean value. This simplifies the summations considerably,
as both sums reduce to the coherent state and we are left with

.9 2
sin”(tgva? + 1) :1+O<%g>+(9<$>.

o2 +1

Do (t) =~ lcosQ(tga) o=
Exercise 3.2: Simplifying the master equation with a thermal bath

Assuming that the system-bath is initially in

e—BHpB

psB(0) = ps(0) @ mp(B), 7B(B) = Z.

show that one can set

Trp {ng(t)w(ﬁ)} =0
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without loss of generality by introducing a redefined system Hamiltonian H§. Here, Vsp is the interaction
Hamiltonian between system and bath in the interaction picture.

Solution:
We call the operator acting on S as

Ks =Tep {Vspms(8) }
and notice that it cal also be written as
Rg=Trg {eit(HerHB)/EVSBefit(HerHB)/ﬁﬂ.B(B)} — tHs/PTyp (Vgpmp) e itHs/h = gitHs/hf¢ o=itHs /b,
Now we can write the Hamiltonian in the interaction picture as
H=Kgs+ (VSB—f(s) ZKS‘FVSI‘B
Where we introduced the new interaction Vsl' - Going back to the Schrodinger picture we have
H=Hy+U'HU =Hs+ Hp+ Ks+ (Vsp — Ks) = Hy + Hp + Vi5.

With these redefined system and interaction Hamiltonian, we use the new interaction picture, indicated
as e, that is obtained with the unitary transformation U = e*(Hs+tHp)/" and get

— UVigUt = Vip.
Calculating the trace over B yields

TrB {ﬁé'B'/TB} = eitH/STrB {Vé‘Bﬂ—B} e_itH/S = eitH/STI‘B {(VSB — Ks) 7TB} e_itH‘lg = 0

Exercise 3.3: Hermitian decomposition of operators

It is always possible to write the interaction Hamiltonias as

Vsg =Y  Aa ® Ba.
[e%

Show that one can assume A, B, to be Hermitian without loss of generality, namely, if they are not, show
that you can find Hermitian operatos A/, B, such that Vsg = > Al ® B/, by using that any operator can be
written as A = Ay +iAy with A; /o Hermitian.

~

Solution:
Let A be an operator and A" be its hermitian conjugate. From these we can build two hermitian
operators, A1, A, as

A= (A+AY), Ay=_(AT—A4) — A=A, +iA,.

l\DI»—l
N | .

Now, the interaction Hamiltonian is hermitian itself, VST 5 = VsB, therefore

VSB = ZAa ® Ba = Z(Aal A iAa2) ® (Bal aF iBaZ) = Z(Aal - iAa2) ® (Bal - iBaQ) — VSTB

(e (o34

Taking the average between Vgp and VSTb we get

"
VSB:—:Z(A()d@Bal a2®Ba2 ZA ®Blﬁ

(%

with Aj = (- 1)1 A,; and Bj = Bo; with i = 1,2.
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Exercise 3.4: Markov approximation in the Caldeira-Leggett model

Consider the Caldeira-Legget model introduced in Exercise 1.2. The interaction Hamiltonian is of the form
Vsp =S ® B with B = Zk CrTl-
Show that the bath correlation function reads
2

C(t) = Trp{B(t)Brp} = Z ;Z’; {cos(wkt) coth <Bh;k) - isin(wkt)} )

k
Defining the spectral density J(w) = 7/23, (c? /wi)d(w — wy), the bath correlation function becomes
ho[ hw
C(t) = 7/ dwdJ (w) {cos(wt) coth (52) - isin(wt)} .
T Jo

A spectral density of the form J(w) = ywO(we — w) is called Ohmic. Here, 7 is a damping constant and w¢ is
a cut-off frequency. In the limit we — oo, show that the spectral density J(w) ~ w leads to C(t) ~ d(¢) + O(h).

Solution:
The bath Hamiltonian reads
HB = Z ﬁ/.ukaLak
k

with aj being the annihilation operator of the k-th bath. The positions xj entering the interaction
Hamiltonian can be decomposed as

ly, t 9 h

—(ap +a,), /£ —.
\/5( k k) k Wh

We want the bath correlation functions, namely

C(t) = Trp {B(t)Brg} = Trp {eitHB/hBe_itHB/hBﬂB} :

T =

therefore we need to use the commutation relation [a,a’] = 1 to find B(t). Noticing that
a(a’a)" = (aa")"a = (1 +a'a)"a, (a'a)"a’ =a'(aa’)" =a'(1 +a'a)”
we have

zata x(aTa—&-l)a
9

T
ae = za'a T _ aTex(a a+1)

e

the operator B(t) becomes

gkck ztwka ar 1y —itwral gkck —it T it
E ag + a; )e” TR = E —(ake R “”“)
( k) - \/5

which makes the bath correlation function

bocalse ] 3 3 3
Ct) = Z JC O e 2 a2 A BTrB {(aaaﬁe_”‘*’“ 4= aaage_”“"‘ + a&age”‘*’a + alalge”“’a) 71'3}
af

EQ2

= zﬂ: Eacajﬁcﬁ Trp {(aaage—itwa n a/];aﬁeitwa> 7TB} _ Z 2"‘Tr 5 { (e + af,an2 cos(twa)) 75}
« «

2 O0ln Zp
= Z T (6 — 2COS(twa)m>

Ze itw 7] 1
Z (e QCOS(twa)a(ﬁhwa) In <1 — = >>
72 2 2

1 he 1 ..
_ a~o (e—ztwa 2COS(twa)m> = Z ﬁ <COS(tWa) |:1 — 2m:| —ZSln(twa)>
= Z (cos (twe,) coth (ﬁ%) - isin(tw@) .
@

We now consider an Ohmic spectral density in the limit on large bandwidth. Using that the hyperbolic
cotangent is

o N

l\')‘:r

coth(z) = e +1 14e? [ ~142 2 atlargex
et 1 1—e2 ~14+0(z) atsmalz
we 2
C(t) ~ dww [Cos(wt) (ﬂ_hw + O(Bhw) — isin(tw)ﬂ ~ 0(t)
0
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Exercise 3.5: Fourier components of system coupling operators

Consider the system coupling operators A, in the interaction picture. Decomposing the system Hamiltonian in

its eigenspaces as Hg = ) _€e,1I(e,), we have

Ao(t) =Y e MI(e) AaTl(e) = Y e ™ An(w).

with fw = €5 — €s the transisition frequency and An(w) = >, , . _p, Tl(es)Aall(es) the Fourier component of

the system coupling operator.
Prove that

Al (W) = Ay (—w),  [Aa(w), Hs] = hwAg(w), Ax(w)rs = e PrgA,(w).

Solution:
The first property follows from the definition:

Alw)= Y Me)Audl(e) = Y T(ey)Aall(e) = Ax(—w).

€, —€s=hw €x—€y=—hw
The commutator can be calculated explicitely:

[Aa(w), Hs] = Aa(w)Hs — HsAa(w) = Y T(ey)Aall(ez)(ez — €) = hwAa(w).

€z —€y=hw
From this commutation rule we have
Ap(W)HE = Ag(W)HgHE ™! = (Hg + hw) Ap(w)Ho ™' = (Hs + hw)" Ag(w).

Therefore,
Ag(w)e PHs = e BHsThO) A (1)) 5 Ay (w)mg = e PMrg AL (w).

Exercise 3.6: Kubo-Martin-Schwinger condition and local detailed balance.

Show that the bath correlation functions,
Cop(t) = Trp {Bu(t)Bgmp}
satisfy the Kubo-Martin-Schwinger condition, namely
Cat) = Chal(—t — iBH)
and use it to derive the local detailed balance condition on the rates

— eﬁhw

’Yaﬁ(w) 7Ba(_w)7

where the rates are defined as ) -
'Yaﬁ(w) = ﬁ/ dTein aB(T)

— 00

assuming that the bath correlation function is analytic in the complex 7 plane for (1) € [—ih, 0] and decays

quickly to zero for |7| — oo.

Solution:
Remembering that the bath correlation function is defined as

Cap(t) = Trp {Ba(t)Bsmp} = Trp {eiHBt/hBae—iHBt/ thrB}
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we verify the Kubo-Martin-Schwinger condition with

Cop(—t —iph) = Trp {e*iHBt/thﬁHBBaeiHBt/h*ﬁHBBgﬂB}
_ ZLBTFB { —zHBt/h+ﬂHBBaeiHBt/h—ﬂHBBﬁe—,ﬁHB} — Trg {e—iHBt/hBaeiHBt/hﬂ_BBB}
=Trp {eiHBt/ﬁB,ge_iHBt/hBawB} = Cga(t).

Now we can use it to derive the local detailed balance condition.

WT 1 > TwT 0
Yop(w h2/ dre (T ﬁ/;oo dre*"Cao(—7 — iBh)

1 co—ifh '
B ﬁeﬁhw / iBh dze”"*Cpa(2) = eﬂhw’wa(_w)~
—0o0—1

where in the last step we made use of the assumptions on the analyticity and decay of the bath correlation
function, which makes the integral over the 7 — iSh line equal to the one on the 7 line.

Exercise 3.7: Stationarity of the thermal state

Recalling that the evolution of the system state is given by

1
atp = Ep = —*[HS,pS] + DpSa

h
with the dissipator in the Born-Markov secular master equation given by
Dps = Z Yas(w) [245(w)ps Al (w) — {Al (w)As(w), ps}] .
afw

demonstrate that the thermal state wg is a stationary state,

Eﬂ's =0.

Solution:

Since the Liouvillian containes two terms, let’s look at them one at the time: First, the Hamiltonian
evolution given by the commutator [Hg, ps]. If ps = ms = e A5 /Zg = [Hg,n5] = 0. Therefore, the
Hamiltonian evolution does not contribute to the time derivative.

Now, let’s look at the dissipator. Remembering from Exercise 3.5 that the Fourier components of the
interaction satisfy

Al (W) = Ao (—w), [Aa(w), Hs] = hwAg(w), Aa(w)ms = e P™rgA,(w),
we can use them to work out the action of the dissipator. Noticing that
Ap(w)ms AL (w) = e PMms Ap(w) AL (w) = e Ag(w) AL (w)Ts

we can write
Drs = Y Yap(w) [ {Ap(w) AL W), 75} — {AL(w)Ap(w), ms}] .

afw

Using local detailed balance, which we proved in Exercise 3.6, we have

Drs = ) [18a(-w) {A5(@)AL (W), 75} — Yap(w) {AL(w)As(w), 7s}] .

afw

Relabeling the first anti-commutator and using A, (w) = A, (—w) we get

Drig = 3 [1ap (@) { Aa(—w) Al (~w), 75 } — vap () {4} (@) As(w), 75} ]

= [ras@) {ALW)Asw), 5} —ap(w) {AL(w)4p(w), ms}] = 0.
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Combining these we have that the action of the Liouvillian on the thermal state is

Lms = 0.

Exercise 3.8: Positivity of the rate matrix

The rate matrix is obtained through the Fourier transform of the bath correlationfunction, namely

oo

Yop(w) = %/ dre’T ws(T), Coap(t) =Trp {B.(t)Bsmp}.

—00

Show that {y,5(w)} is a positive matrix by showing that viyv > 0Vv.

Solution:
The scalar product reads

1 _
VhYaBUB = ﬁ/drelmv;Ca,g(T)vg.

Thus, we now write explicitely the bath correlation function in the energy eigenbasis as

—Ben
. ; o
C t) = Zént/thm 7zemt/thn
aﬁ() Ze e s o
nm
Z’U*"}’ BUB = i Z /d'reiw‘rl}*€i€"T/hB”me—i€mT/thLn e Ben o
ol == i "
@ z nmaof ZB
= i Z U*Bntmne_Benv /dTeiw-,—eien'r/ﬁe—iemq—/h
hQnmaﬂ ofe DB Tzp P
1 e_ﬁen
=2 2 vaBiT B 5 vpdw — [em — €nl/M)
nmaof

Remembering that the bath operators B, are hermitian, namely B?™ = B™"* we can introduce the
vectors V™" =375 Bi"vg, thus obtaining

” 1 " e_ﬁen 1 e_BEn
> Vi Yapvs = = >y anZ—B5(W ~lem —en]/H) = 75 > |an|2z5(w —lem —€n]/h) 20
af nm nm

Therefore, the eigenvalues of v are non-negative.

Exercise 3.9: Classical behaviour of the Born-Markov secular master equation

Consider sequential projective measurements of an open system in its energy eigenbasis Hg = > _esII(ey).
Assume that in between the measurements the Born-Markov secular approximation is justified and we can use
the master equation d;ps = Lpg, with £ the Liouvillian.

Show that the non-normalized state conditioned on receiving the measurement outcomes € ), -+ , €51y at
times t, > --- > t; > 0 reads

5S(€S(n)7 .. ’68(1)) _ p(es(n))eﬁ(tn—tn_l) .. 'P(€s(1))eulps(0),

where P(es(k)) is the projection superoperator associated with measurement result €,z)-
Show that the measurement probabilities p(eg(ny, -+ ,€s1)) = Trs {ﬁs(ﬁs(n),“' ,es(l))} satisfy the Kol-
mogorov consistency condition, therefore making it undistinguishable from a classical stochastic process.

Solution:
The measurements act through the projection superoperators

P(ex)p = (ex)pIl(er).

Therefore, the final non-normalized state is given by the sequence of Liouvillian evolution and projective
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measurements as

,55(65(”)’ ... ’65(1)> _ p(es(n)>eﬁ(tn—tn_1) .. .P(Es(l))eﬁtlps(0)7

for time-independent Liouvillian superoperator.
The Kolmogorov consistency condition reads

p(rn,... ,r/i{’... ’rl) :Zp(rn’ SThy * ,7'1)'

k

Applying the RHS to the sequence of projective measurements we get

Trs {P(Es(n))eﬁ(t"’t"‘“ - Dpggeftemt=1) .. Pley g e pg (0), }

with the dephasing superoperator defined as
Digp =Y T(er)pll(ex)
k
Notice that

_1Hst/hp 6szt/h Ze—l(u}m w")tH( )pSH(en - = / dtZ —i(wWm — wn)tH( )pSH(en) N DHSPS

mn

Notice that

LDygps = lim / (—— [Hs, UpsUT + ) kn(w {S( YUpsU'ST (w ——{ST (w),UpSUT}D

nw

with U = e~ *#st/" Obviously [Hg, U] = 0. Furthermore, we remember that [S, (w), Hs] = hwS,(w) =
Sp(w)U = e~ Hsth)t/hg (1)) = e~ ™! S, (w). Using these properties, we have

T .
£Duyps = i [ <—%U[Hs,ps]UT + Y k) | U @)psSL @)U = 50 (S16)Sa(w).ps) U*D

nw

which implies
[£,Du,] = 0.

Furthermore,

P(ex)Drsps = Y (ex)M(en)psTl(en)(ex) = D T(en)TI(ex) psTl(ex)TI(€) = DrrgPle)ps

which means [P(ex), Dug] = 0. Therefore, we can move the dephasing operator from the k-th position
to the n-th position:

ZP Tny* o+ ,71) = Trg {P(fs(n))eﬁ(t”t"’l) - Dpggettin) . '7’(65(1))€Etlﬂs(0)}
— Trg {DHSP(GS(n)>e£(tn_tn—l) T 1) P (e, ) ﬁtlps(o)}
_ Z (ei] TI(e;) [ Ex(m) )€ eLln—tn_1) | [elltr—tri-1) .. ’P(es(l))ealpg(O)] II(e;) |es)
_ Z (el [Pleagm ) ltntn=1) - TS —t00) . Peyy))e % p5(0)] [er)

p(Tm c.. ’%7 c. ’7«1) = Trg {P(es(n))eﬁ(t"_t"‘l) .. .He»c(tk—tk—l) ... P(es(l))eﬁtlps(o)}

which proves that the Born-Markov secular master equation satisfies the Kolmogorov consistency con-
dition.
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Exercise 3.10: Entropy production rate in the Born-Markov secular approximation

Show that the entropy production rate

can be written as () = —kpd,D[ps(t)|7s].

Using the theorem about the CPTP master equation of Example 3.1, stating that there exists a CPTP map
E(dt) propagating the state forwards in time: pg(t+ dt) = £(dt)ps(t), and that the thermal state in stationary,
E(dt)ms = mg, show that

Dlps(t)|ms] — D[E(dt)ps(t)|E(dt)ms]
dt\0 dt ’

and use it to prove the positivity of 3(t).

Solution:
The entropy, internal energy, and heat current are defined as

Ss = —Trs{pslnps}, Us=Trs{Hsps}, Q=Trs{Hsps}.
Therefore, we can write the entropy production rate as
% = —Trs{ps (Inps + BHs)} = =0, Trs {ps (In ps — Inmg)} = =8, Dlps(t)|7s].
Writing the derivative explicitely, we have

s = pi Ples@lms] = Dlps(t +db)ws] _ . Dlps(t)ms] — DIE(dt)ps(t)|E(dt)ms]

>0
dt—0 dt dt—0 dt -

where the last inequality follows from the monotonicity of the relative entropy.

Exercise 3.11: Born-Markov secular master eq. with multiple baths and driving

Considering the global Hamiltonian

Hsp(M\) = Hs(A\y) +Z( (”)+H(”))

and the initial state

psB(0) = ps(0 ®7Tu Bu),

show that the Born-Markov secular master equation for slow driving is

Dups(t) = — - [Hs (M), ps(t)] + ZD (A)ps(t

Tk

This requires from the vanishment of the cross-terms

Ty { VR OV O (Bu)mu(5) | =0,

which follows from Exercise 3.2.

Solution:
First, we go into the interaction picture through the unitary transformation Uy, =

T exp (—i fg ds[Hs(As) +>, H,,]%), which transform an operator A into A(t) = UmtAUl In the

interaction picture, the global state evolves according to

dupss = —5 > [Vult). psp].
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Integrating this differential equation we get
N 1 t S1 _ 5 _
pont) = psn©) 1 [ ds S WFuton)ism )~ g [ don [ SO0t it (o),

Now we can take the trace over the baths to find the evolution of the system alone. Notably, the
first-order term contains the operators

K% =T, {my}
which can be set to 0 without loss of generality as demonstrated in Exercise 3.2:
Tr, {f/,,w,,} = 0.

Therefore, tracing out the baths makes the first order in V,, vanish.
To tackle the second order term we now assume that the baths are very large and their state is not
perturbed by the system evolution. Mathematically:

pSB ®7TV

Furthermore, we consider a decomposition of the interaction Hamiltonians as
V,,sz”@@B”%V ZA” ) ® BY(t
where AY acts on S whereas B, acts on bath v. The double commutator contains terms of the form

CL(t) = v, { BL()BY(my @ ) }

which is the generalization of the bath correlation function to multiple heat baths. This allows us to
write the double commutator as

Trp {Z[Vu(&)a [Vu(82),ﬁSB(82)]]} = (025(81 — 52) [A" (s1)Af(s2)ps — AZ(82)55AZ(51)} +

v proaf
+ Cht(s2 — 1) [ B Alj(s2) Al (s1) — Al(s1)ps A(s2)] )

Crucially, if 4 # v we can separate the trace as

Ch(t) = Tr, {BL(t)m,} T, { By, |
and we can perform the sum over the indices «, 3, yielding the operators

Z Crhi(s1 — s2) A% (51) Al (s2) = K§(s1) K} (s2) = 0.

Therefore, only the diagonal u = v terms contribute. Using Cy%(t) = Cf5(t) the time evolution of the
partial state pg is

ps = —% ) dsy " (C¥s(t — s) [A%(8)A5(s)Ps(s) — Af(s)ps(s)AL(D)] +
vafS

+ Cgals — 1) [ps(s)Af(s)Au(t) — AL(t)ps(s)AB(s)]) -
In the weak coupling regime we can approximate ps(t) = ps(s) + O(V) reducing the equation to

oups = =5 / ds 3 Cly(t — 5) [AY()ps (D) AL(E) — AL AY()ps(1)] + huc.

vaf

i = 7/ dr 3" C%a(7) [A5(t — 7)5s($) AL(E) — AL At — T)Fs(B)] + hc.
vaf

s = i/ dr 3 Cla(r) [A5(t — T)ps(8) A% (E) — AL (£)AS(E — 7)ps(D)] + he.
vap
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where in the last step we used the Markov approximation to extend the integration up to co.
In order to approach the secular approximation, we first need to decompose the system operators A% (t)
into their Fourier components, which is obtained by noticing that

ZH (em) AL (t ZH (em) Uy AL Usni X (€y,)

in the non-driven case one calculates directly UinII(e,) = e_i“’”tl_[(en). However, in the driven case
we need the driving to be slow. Then, we can approximate the system Hamiltonian as Hs(\) =
Hs(Xo) + A\tHs, and the unitary becomes

At _
Ut = T exp (—z/ Hg(N\o) ﬂ —1 HS%> = exp [—i (HS()\O) +’H,)\t ; AO) E] = exp [—inSgIOWE}

" h h
Choosing the eigenspaces of HZ°" determined by the projectors II(e,()\;)) we have

AL = Ze—i[wn(At)—wm(At)]tH(em()\t))AZH(Gn(/\t)) _ Ze_iw(At)tAZ(W(/\t))-
Dropping the argument ()\;) for the sake of conciseness, we write the Born-Markov equation as
~ 1 Z(/J T 7’L w w’ 1% v v v ~
ops =3 [ Y C () [A5(0)is ()45 ) — A5 AE()B (D] + e
vaf ww’

and we now use the secular approximation, which states that the (w + w’)t components oscillate rapidly
compared to the state dynamics and therefore we can approximate e« +«)t ~ 0w, —w (rotating wave
approximation). Then, the Born-Markov secular master equation reads

s = gz [ S0 Y Clp(re” [A5()as( L) — AL(-) A5 )ps(0)] + e

vafB w’

Ops =gz [ S0 Y Cls(re” A5 (041 w) — 451 )45 w)s(0)] + b

vaf w

Carrying out the integration we can introduce the Fourier transform of the bath correlation function

oo

v 1 > v TwWT 1 v TwWT
'yaﬁ(w) = ﬁ/ d’TCaB(T)e , Aap(w) = ﬁ/ degn(T)C’aﬁ(T)e

which satisfy 775" (w) = 75, (W), A" (w) = A4, (w) and combine to

1 = v IWT __ 725(“}) {
ﬁ/o dTCaB(T)e = 2 + hkaﬁ(w)

Then, the BMS master equation can be written as

ups = S5 [ + Das(o)] [45(1as 01427 () — A7) A3@ps(0)] + e

vaf w

os = 5 (st 2450451 0) - {421 @) 4500, 550 }] +

Tl @)
~asle) (A1) 50, 5]

where we recognize the dissipator and the Lamb shift. Neglecting the latter and going back to the
Schrodinger picture (using the properties of the Fourier components, see Exercise 3.5), we finally find

Oips = —%[HS(M),PS] + ZV:DV(/\t)PS

where the dissipator generated by bath v is

s =3 X Sasw) [245@)es (0145 () — { AL @) A%(w), ps(1)}]

af w=en(At)—€m (At)
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Exercise 3.12: From BMS master eq. to classical master eq. and decoherence

Consider a non-degenerate system Hamiltonian Hg = ) €, |z)(z| with €, = ¢, & = = y. Show that the
populations p.(t) = (z|ps(t)|x) of the energy eigenstates obey a closed equation of the form

0spx (t) = Z [nypy (t) - Ryacp:r (t)] >

Y

with rates Ruy = 305 v08(6y — ) (2| Agly) (y] Aala).
Use Exercise 3.6 to confirm that the rates obey the local detailed balance condition, namely
R“LU — e‘ﬁ(em_ey)_
YT

Assuming that the set of transition frequencies is also non-degenerate, namely €; — €y = €, — ¢ & ¢ =
k A y =1, the coherences p,,(t) = (z|ps(t)|y) evolve according to

i R.. + R,
Otpay(t) = _ﬁ(ew — €y)pay(t) — Z %pwy(t)

z

which is an exponentially dumped oscillation, causing decoherence.

7~

Solution:
Let’s start from the Born-Markov secular master equation:

i i
Oips = —;i[Hs,ps] + Dps — 0y (x|psly) = —(ex — €) (x|ps|y) + (x|Dps|y)

h
The dissipator acts as
Dp = Z 7&5 2Aﬁ )pSAT {AT w)va}]
afw
with Aa(w) = > . E— (e, )AnI(e;) which satisfies Al (w) = An(~w), [Aa(w), Hs] = hwAy(w).

SInce we are Con51der1ng a non-degenerate Hamiltonian, the Fourier component of the system interaction

operators read Aq(w) =3, . _, leyXey| Aa |ex)eal-
Let’s look first the diagonal terms:

(@Dpslz) =D D vap(w) 2 (2l Aplz +w)(z + wlps|z +w)(z + wl|dale) +

af w

— (@lAalz — w)(z — wl|Aglz)(zlps|z) — (z]ps|z)(z]Aalz — w)(z — w|Ap|2)]

where the summation over w selects the transitions involving x. In particular, calling in the first line
y =2+ w and y = x — w in the second line, we find

(@ Dpslz) =YD {rasley — ) [2 (2l Asly) (wlosy) (vl Aala)] +

aB Y
—Yap(€z — &) [(z|Aaly) (y| Aplz) (z|ps|z) + (zl|ps|z) (x| Aaly)(y|Asl)]} -

Introducing the populations p, = (z|ps|z) and the rates Ryy = >°,527ap(€y — €2) (z[Agly) (y|Aa|z) We
have

(x|Dps|z) = Z[pry — Ry2ps]
y

which, when plugged into the BMS master equation yields the classical master equation
8tpz = Z[Rzypy - Ryzpz]
Yy

Now ket’s focus on the coherences:

@|Dpsly) =D ) Yapw) [2 (x| Aplz + w)(z + wlpsly + w){y + w| Aaly) +

af w

— (@|Aalz — w)(z — wlAg|z)(2lpsly) — (lpsly) (Yl Aaly — w)(y — w|Asly)]-
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This scalar product can be simplified notably thanks to the assumption on the non-degeneracy of the
transition frequencies. In fact, in the first line we have that the transition frequency w must link both z
and 7' = x + w, and y and 3’ = y + w. However, since we are looking at = # y, the non-degeneracy of
w implies that there are no frequencies that make the first line finite. Therefore, the first line does not
contribute to the dynamics. Nonetheless, the second line does because the transition frequency w links
only one between z,xz’ and y,y’. Therefore, calling z = x — w for the first term and z = y — w for the
second, we have

@|Dpsly) = =D (aplex — €2) (@l Aal2) {2z Ag|z)pry + Yap(ey — €2) (Y] Aal2) (2] Agly) pzy)
af =z

_ Z R ‘; Rzy Pay-

Plugging this into the master equation we finally get

i R.: + R,
Otpay = _ﬁ(ew — €y)Pay — Z Typrcy'

z

Exercise 3.13: Ergotropy and passive states

For an isolated system with Hamiltonian H in the state p we define the maximum extractable work or ergotropy

as

E(p) = m(?XTr {H(p—UpUN} >0

where the maximization is over all possible unitaries U. In this case, the Hamiltonian is the same at the
beginning and at the end of the process, which means that the process is cyclic.

Show that E(p) = 0 whenever p is passive: Writing H = ", € |k)(k| with ordered energies €1 > €, then

a state p = >, \g [k)(k| is passive when A1 < Mg VE.

Solution:
Notice that the maximum is achieved when, for a fixed Tr {Hp}, Tr {HUpU'} is minimum. Let’s focus
on the latter.

Tr {HUpU'} =" ecUnpisUsy = D expalUniUs, () (els) =Y expal (vela)
kls klsa ka

where |vg) = > Uf, |s). The ergotropy is

E(p) = mgxzekpa (I (klo) 12 = | (wrlar) 7).
ka

When E(p) =0 — VU : Tr {H(p — UpU')} < 0, namely

kapa(| (K| |2 — | (vg|er) |2) < 0.
ko

Assuming that the state p is not passive but still diagonal in the Hamiltonian eigenbasis it means
that there exists two energies €¢; > €; that have probabilities p; > p;. Then, by choosing the unitary
transformation that swaps 7 <+ j and leaves every other eigenstate untouched, we find

Tr {H(p — UPUT)} = (e —¢)(pi —p;j) >0

which is absurd. Now, let’s look at the case in which p is not diagonal in the Hamiltonian eigenbasis.
Let’s consider the passive state p = >, pa, |k)(k|, which is diagonal in the Hamiltonian eigenbasis by
construction. This state can be reached by applying a unitary transformation on p:

=3 palaal = 5= 3 pe IR
a k
by using the unitary U = >~ |k)ay|. Since p is passive we have

E(p) = Z €xPal (ko) |2 - Zekpak-
ka k
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Notably, Sk = | (k|a)|? is a bi-stochastic matrix since >, Ska = Y., Ska = 1 and Spa > 0. Fur-
thermore, the set of bi-stochastic matrices is convex: if A, B are bi-stochastic, then also ¢A + (1 — ¢)B
with ¢ € [0,1] is also bi-stochastic. Let’s look at the minimum over the set of bi-stochastic matrices
of >0 €kSkaPa. Suppose that the minimum is not an extremal points: then it can be decomposed as
S =qA+ (1 —q)B with g € (0,1). However, this means that A, B are minima as well, which is absurd.
Therefore the minimum happens only at the extremal points of the set. These points are the permutation
matrices: namey matrices in which all entries are either 0,1. Importantly, we have already constructed
the bistochastic matric that yields the global minimum by studying p. Thus, since Sk, = | (k|a) |? is
not an extremal point of the set we have E(p) > 0. In conclusion, this means that if the state does not
commute with the Hamiltonian it is always possible to extract energy from it by applying the unitary
transformation that ends in the passive state.

Exercise 3.14: Extracting work with unitaries
Consider an unitary process with three steps:
(i) Transform the eigenbasis of pg(0) to the energy eigenbasis of Hg(Ao);

(ii) Reorder the populations of the energy eigenstates so that the new populations, denoted by g5, decrease
monotonically with increasing energy;

(iii) adjust the Hamiltonian, i.e. switch Ay — (), such that the separations between adjacent energy levels are
set as g, = e~ P (20)/Zs(X0) " while the eigenvectors |e,) remain fixed.

After these steps, the state is a thermal equilibrium state with respect to Hg ().
Calculate the amount of extracted work, and verify that, after completing the cycle with an isothermal
transformation the extracted work reads

—Wiot = Fs[ps(O),/\o] — ]:()\0) > 0.

Solution:
The initial energy is Uy = Tr {H(\o)ps(0)}. Instead, the energy after step (iii) is

Up=Tr {H()\g) > 4 Ies><6s|} => €= ~Tln(g:25)qs.

Splitting the log we find
Uy = TS[ps(0)] - Tln Z = TS[ps(0)] + F(Xy).
Therefore, the extracted work after the unitary steps (i-iii) is
W = —(Us = Up) = Tr {H (X0)p(0)} — TS[p(0)] — F(Xo) = Flps(0), Aol — F(Xp)-
Now we make an isothermal transformation to get back to the initial state. Importantly, the total entropy

reads X(t) = S[ps(A)] — % so we can write the entropy production in a time interval ¢ as

0
0% = Adt 5+ Slps(N)] = BQ.

Since the process is isothermal, ps(\;) = e #Hs(\) /Zg(),), which means that

9 Ips(Ar)

Sles(V)] = ~Tr {T log ps(%)} = —Tr {(-=BOrH — 0x1og Zs(A:))p(\e) log ps(Ae) }

88 = AStTr {(BONH + 0xlog Zs)ps(—BH — log Zg)}

while the increase in heat is
6Q = Tr {H(—BO\H — 8y log Z5)ps} At

Combining them we get

g ; —B(0zH)e BH
0¥ = —A0tTr {(BONH + 0xlog Zs)ps log Zs} = —Adtlog ZsTr ¢ (BONH + Tt — )ps
s
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from which we see that the isothermal process is reversible:
0% = —Adtlog Z [Tr {(BONH + Tr {—B(0rH)ps})ps}] = —Adtlog Zs [Tr {B(0rH)ps} + Tr {—B(0rH)ps}]

oQ

Now we can calcuate the change in internal energy of the system, and, htrough the first law, the work
done on it.

Uo—=Up = Tr {H(Xo)m(Xo) }=Tr {H(Xg)m(Ao)} = TS[m(Ao)]+F (M) =TS[r(Xo)]=F (Xo) = @+ Wisothermal

Since Q) = AS we find
I/Visothermad = «7:<)\0) - ]:()‘6)

which means that the work extracted from a single cycle is

—Weycle = =W — Wisothermal = F[PS(O)7 >\0] - ]:()\0)

Exercise 3.15: Work extraction from quantum coherence

The dephasing operation Dy is defined through

Duap = M(e)pll(er),
k

where II(ex) is the projector onto the k-th eigenspace of the Hamiltonian Hg.

Consider a state pg with coherences in the energy eigenbasis, i.e. Dy ps # ps. Show that Fs(Dygps) <

Fs(ps), which means that is it possible to extract work when transforming pg to Dy ps.

Solution:
The nonequilibrium free energy is

F(p)=Tr{Hp} +TTr{plnp} = Zekpa| (kla) |* + ZTpa In pg.

ak a

Instead, the dephased state Dp = >, qi [k)k| with gx = >, pa| (k|a) |?, which means that its nonequi-
librium free energy is

F(Dp) =Y expal (kla) [ + T > pal (kla) |* In(pal (kla) |*)
ak ko

Thus, the difference between the noneugqilibrium free energies reads

F(p) = F(Dp) = =T > pa | (kla) PIn(| (la) [*) > 0
«a k

Exercise 3.16: Quantum Carnot cycle

Consider a two-level system with Hamiltonian H = A, |e){e| as the working medium of a heat engine. Here, |e)
denotes the excited state and A; the controllable energy spacing of the medium.

Construct an example of a quantum Carnot cycle and find the conditions to achieve zero entropy production.

Solution:
We can consider the cycle made of two thermalization processes and two unitaries such that, after the
thermalization with the hot bath, the probability of finding the qubit in the excited state is

1

P1 :—eﬁhA1+1'

Afterwards, we disconnect the qubit from the bath and change the energy separation to Ay while keeping
the probability of finding the qubit in the excited state fixed, ps = p;.
Then, we let the qubit thermalize with the cold bath while the energy separation is Az, and the excited
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probability changes to
1

ePebs 1 1
We then disconnected again the qubit from the bath and change the energy separation to A4 while
keeping ps = ps.
Finally, we thermalize again with the hot bath, completing the cycle.
In the first step, there is no heat exchange, and the work extracted is
AQ — Al
eBrdy 4 1°

b3

Wh—)c =

To have an isothermal process with the bath, we need the state to be thermal. Thus, we first quench
the Hamiltonian Ay — A} = %. This requires the work

T,
unench,c = (T_;Al - AQ) D1-

Then, we can proceed with the isothermal process with the bath, where the work and heat exchanged
are
Q. =T.AS, W.=AF,

In particular, the heat reads

1—
BeQc = p1log pi+(1—p1)log(1—p1)—pslog ps—(1—p3) log(1—p3) = log —

b1 P1 b3
1 —p3l
1 +p1 Ogl—pl P3 Ogl—

p3 p3
noticing that 1 — p; = e#»?1p; we find
BeQe = (51 = Bes) +108 - = P11 +psfes = Bni(1 = p1) = Beldo(1 = ps) +log
The energy difference gives the work done:
AU = Agps — Aypy = W = AU — Q...

Then, the second unitary process exerts the work

Ay — Asg
Weon = (Ag — As3)p3 = m~
Before the last isothermal process we once again quenh the system Hamiltonian Ay — A) = % such

that the state is thermal with respect to the hot bath. This requires the work
Th
unench,h = (TAS - A4> D3
c

Finally, we can do the isothermal process with the hot bath, exchanging both heat and work. In
particular, the heat is

BrnQn = AS = —pilogpr — (1 — p1)log(l — p1) + pslogps + (1 — p3) log(1 — p3) = —fcQe.

From this we can calculate the entropy production in one cycle

AScycle = _ﬁth - ﬁch =0
which means that the cycle is reversible.
The total work extracted is
_Wtot = _Wh—m - Wc - Wc—)h - Wh - unench,c - unench,h
. ( Ny — Aq Ay — As

I
eﬂhAl‘i‘]. eﬂcAS_’_l +Alp1_A4p3_Qh+

+ Agps — Ajpr — Qe +
T, T3,
—A; - A — A3 — A
+ |:Th 1 2} p1+ |:Tc 3 4] ps)
—Wiot = — (Ag — Ay + Ay — Ag)p1 + —Qc + (Ag — Ay + Ay — Ay)ps — Q)

=Q.+Qn=0Q <1—§:—;>

I

which is performed at Carnot efficiency ncamot = 1 — T
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Figure 3: Mutual information I[mr4p] of the two halves of the spin chain at the thermal state m4p. We fixed
h =1, and considered weak (left, g = 0.2) and strong (right, g = 5) coupling for a cold (blue, T' = 0.5) and a
hot (orange, T = 5) temperature. Note the difference in two order of magnitudes between the weak and the
strong coupling.

Exercise 3.17: Numerical calculation of many-body thermal state

Consider a one-dimensional Ising model, described by the Hamiltonian

N N—1
Hiing = ~h) ot =gy olol*,
i=1 i=1
with NV the number of sites, h the coupling to the external magnetic field, and g the strength of the nearest-
neighbour interaction.
Verify numerically the relation
TAB R TARXTR

for N = 2,4,6, and 8 by separating the chain in the middle.

Solution:

import numpy as np
from qutip import *
import matplotlib.pyplot as plt
HUEARHBRAARBAAHBAARBEARRAARBBARHBABRBARBHBRARBARHBRAHBEAHBRARBEAAHBARHBRAHH
eye= Qobj ([[1,0], [0, 1]11); # Single spin identity
sz = sigmaz(); # Single spin S_z
sx = sigmax(); # Single spin S_x
HUARBHBRARBERABRBRB AR B BB B BABHBRRHBARBHBRBRBARBHBRARBRRHBRARBBRBHBRRHBRAHH
def Hamiltonian(h, g, N):
Hh=0; Hg=0;
EYE = [eyel*N
for i in range(N):
tEYE = EYEx*1; tEYE[il
Hh+=tensor (tEYE) ;
for i in range(N-1):
tEYE = EYEx*1; tEYE[i] = sx; tEYE[i+1] = sx;
Hg+= tensor (tEYE);
return -h*xHh-g*Hg

[
n
N

def initial_states(beta, h, g, N):
H = Hamiltonian(h, g, N);
rhoAB = (-betax*H).expm(); rhoAB/=rhoAB.tr () ;

A=[1; B=[1;
for i in range(int(N/2)):
A.append(i); B.append(int(N/2)+i)
rhoA = rhoAB.ptrace(A); rhoB = rhoAB.ptrace(B);
rhoArhoB = tensor (rhoA, rhoB)
return [rhoAB, rhoArhoB]

def mutual_information(beta, h, g, N):

X = initial_states(beta, h, g, N);

return entropy_vn(X[1]) - entropy_vn(X[0])
HHBHHAHHBHB R A BB A B R A BB R BB BB BB BB H BB R BB A BB BH A BB BB B H B R R BB A B H BB R B R B HHH
def calc_plot(T, h, g, N):
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k = len(g);
for i in range(k):
plt.subplot(1,k,i+1)
plt.xlabel ("$N/2$"); plt.ylabel ("$I[\pi_{AB}I$")
plt.title("$g=%.1f h$" %glil)
for j in range(len(T)):
I = np.zeros(len(N));
for s in range(len(N)):
I[s] = mutual_information(1/T[jl, h, glil, N[s])
print (N, I)

plt.plot(np.array(N)/2, I, ’--0’)
return
HEHAHAHBAHEHEHAHAHHSHEHEH AR A H BB B S BB H AR S B HEH A H AR H RSB HSH SRS B HSHH
h=1
N = [2,4,6, 8, 10, 12]
T = [.5, 5]
g = [.2, 5]

calc_plot(T, h, g, N)
plt.show ()

Exercise 3.18: Dissipation inequality at strong coupling

By defining the strong coupling internal energy as

Us(t) = Trsp { [HS(At) + Z Vs(?g)(kt)‘| pSB(t)}

and thus the heat as @, (¢t) = —Tr, {H}(;) [ (t) — pV(O)]}, show that the following expressions are equivalent:

E=ASp Z 0 %(t) =D [pSB(t) ps(t) ®m(ﬁy)] =Y Dlpo(®)[m(B.)] + Lot [psn (2)],
where the total information is defined as Iyt (p1..n) = 32, S(pi) — S(p1...n)-
Solution:
EZTr{pSB(t)(lnpsg — In[ps(t ®7TV }: Slpss(t)] + Slps(t) ZTr{pu )Inm,}
= —Slpsp(0)] + Slps(t Zﬁ {pv(t)lnm,} = =Sps Zsm + Slps(t ZTr {p,(t)Inm,}

~ 5" Tr, {(pu(t) - m) Inm, } = AS[ps(t) +Zﬂy X —mH(”)}
-3 %2

The entropy change has two positive contributions: D[p,(t)|m,(8,)], which represent the amount of
information that is lost when describing the baths with the thermal states m,, in fact, during the
evolution the baths’ states change; and Iiot[psp(t)] which accounts for the correlations that build up
between system and baths, and, in particular, the amount of information that is lost when describing
the global state with a product state.

Exercise 3.19: Quantum thermodynamic properties at strong coupling

Defining F5(\) = —kpTIn Z5(\), with Z5(\) = Zsp/Zp and e P15V /Z5(\) = Trp {msp(8,\)}, show that
Us(A) = Trs {ms[Hg(N) + BIs Hs(N)]} = 95[6F5(N)] = Usp(A) — U,
Sgo\) = kBTI‘S {71';'[— hlﬂ'g + ,82(95]‘[;(/\)]} = k‘B,@235.7:§(>\) = SSB(/\) - SB.

Note that in the book one finds g instead of 7%, which is—I believe—a mistake.
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Solution:
From BF% = —InTr {e~#H5} we can calculate the derivative as

1
25

9p(BFs) = —=Tr {3/36_/”{5}

Since in general [H§, 0sHE] # 0 we have to be careful with the derivative. Thankfully, the linearity and
cyclicity of the trace allows us to write

T {925} = 301 { L o EI (a4 oo+ 00 |

= T { —Hge 5 — B9, Hyle 5 }
from which we have
0s(BFg) = Tr {ng[Hg + B0sHS]} = 0s[—In Zsp + Zg| = Usp — Up.
From B20sF% = BOg(BF%) — BF% we have
B20sF5 = Tr {w5[BH% + B20sHE + In Z5)} = Tr {n5[—Inns + B0 HE)}
Using the definition of Z¢ we finally have

B*0sF§ = BUsp —Up) — B(Fsp — Fp) = Ssp — SB

Exercise 3.20: Positivity of entropy production at strong coupling

Using the Hamiltonian of mean force HY defined through the relations

e—BH5(At) ZSB(/\t)
———— =Trg{rss(\)}, Zi(\) = ——+=
o = T {mspO). 2300 = 220

and defining internal energy and system entropy as
Us(t) = Trs {ps(t) [Hs(No) + BOs[H5ON}.  S5(1) = Trs {ps(t) [~ Inps(t) + B20[H5(M)]] }
use the following definitionm of heat Q*(¢t) = AU4(t) — W (t) to show that the entropy production

Q*(t)

B*(t) = AS5(t) - =

can be written as
E%(t) = Dlpsp(t)lmsp(Ae)] — Dlps(t)|mg(Ae)].
Finally, use the monotonity of the relative entropy to show that ¥*(¢) > 0.

Solution:
Using the definitions and the fact that the entropy of the global state does not change due to the unitary
evolution we have

Y =Tr{psp[lnpsp —Inmgp]} — Tr {ps[ln ps — Inng]}
= —Slpsp(t)] + Slps(t)] + BTr {psp(t) Hsp (M)} +In Zsp(Ae) — BTr {ps(t)Hs(Ae)} — In Z5(Ar)
= —Slpsp(0)] + Slps(t)] + ATr {psp(t) Hsp(Xe)} — BTr {ps(t)Hs(Ae)} +1n Zp

= —BT {ms00) Hsn00)} —1n 22220 1 S{ps(0)] + BT+ {ps(t) Han(h)} — BTr {ps(OH500)}

= BW(t) —In Z5(Xo) + Slps(t)] — BTr {ps(t) Hg(Ae)}
= BW(t) + BF5(ho) — BTr {ps(t)[H5(Ae) + T'ln ps(t)]} = BW(t) + BF5(Ao) — BlUs(t) — TS5(t)]
= BW () = BIF5(t) — Fs(h)] = BAUg — BQ™(t) — BAUS + ASg = AS5(t) — BQ" (D).

In particular, using that D[Tra {pap}|Tra {cap}] < D][pap|oap] one finds that ¥*(¢) > 0.
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Exercise 3.21: Comparing the strong coupling entropies

Both exercises 3.18 and 3.20 study the entropy production at strong coupling. However, while the former
includes the coupling energy into the system’s energy, the latter studies the effects of the interaction through
the Hamiltonian of mean force. Here, we compare these two cases.

First, consider the case Vgp(Ao) = 0, such that Hg(Ao) = H§(Ao). Show that this imples

X (t) = 5(t) = Dlpsp(t)Irsp(Ae)] = Dlpss(t)|ms(Ar) @ wp].

Thus, if 7gp ~ 75 ® Tp, we have X*(t) = X(¢).
Now, assume Vgp(Ag) # 0 and an initial state of the form psp(0) = msp(S, A\p). Show that

¥*(t) = () = Dlpsp(t)Imsp(M)] — Dlpsp(t)|ms(\) @ mp] + I[msp(Ao)] + D[ngp(Ao)|m5].

Confirm that this is related to a boundary term and that ¥*(¢) = X(t) if the zeroth law holds, namely mgp =
s QTRB.

Solution:
Let us do the second point immediately since the first one follows from it. From Exercise 3.18 we have

%(t) = ASfps(t)] - BQ(), Q) = —Trp {Hplpp(t) — p(0)]}-

Notice that the result of Exercise 3.18, namely writing this entropyproduction in terms of some relative
entropy, requires a separable initial state. Thus we do not use it.
Instead, we use the result of Exercise 3.20 since we are interested in the states in the form 7 4pg.

¥*(t) = X(t) = Dlpsp(t)|msp(A)] — Dps(t)|m5(A)] — AS[ps(t)] — BTrs {Hp[p5(t) — p5(0)]}
= Dlpsg(t)|msp(At)] + Slps(t)] + Tr {ps(t) In75(A)} — Slps(t)] + Slps(0)]
— BTrp {Hppr(t) — pB(0)]}

= Dlpsp(t)lmsp(M)] + Tr {ps(t) In75(Ae)} + Tr {pp(t) In7p} — Tr {pp(0) In7p} + S[ps(0)]
= Dlpsp(t)|msp(A\e)] + Tr {psp(t) n[r5(N) @ 7]} — Tr {pp(0) In7p} + S[ps(0)]
= Dlpsp(t)Imss(At)] — Dipsp(t)[ms(Ae) ® 78] — Slpsp(t)] — Tr {pp(0) In7p} + S[ps(0)]
= Dlpsp(t)lrss(M)] — Dlpsp(t)[rs(Ae) © 78] = Slpsp(0)] — Tr{pp(0) In7p} + Slps(0)]
= Dlpsg(t)Imsp(Ae)] — Dlpsp(t)|m5(M) @ 78] + I[psp(0)] — Tt {pp(0) In7g} — S[pp(0)]
= Dlpsp(t)Imsp(M)] — Dlpsp(t)[ms(Ae) ® ] + I[psp(0)] — D]pp(0)|7s]
= Dlpsp(t)Irss(At)] — Dlpsp(t)|ms(M) ® 78] + I[msp(Xo)] — Dlrp(Ao)|m5]
Now, if the initial state is separable, I[ps ® mg| = 0, and, if at the beginning there is no interaction

75(Xo) = 7 — D[np|ns] = 0 and we are left with the first case. If the zeroth law holds, the first two
relative entropies cancel out because 7§ ~ mg since the interaction is affects negligibly the state. On
top of that, the mutual information I[rgp] vanishes because the state is separable, and the last relative
entropy vanishes as well because 7} ~ mp. Thus, when the zeroth law holds, we have ¥*(¢) = X(¢).

Exercise 3.22: Special coarse-graining for the observational entropy

Given a coarse-graining X, namely a complete set of projectors {II(x)}, the observational entropy is defined as

Sobs(P) =D pu [~ Inp, + IV ()]

where p, = Tr {II(x)p} is the probability of observing 2 and V() = Tr {II(x)}.

Find the coarse-graining such that SX (p) = Ssn(p), namely the observational entropy becomes the Shannon
entropy.

Find the coarse-graining such that SX

“bs(p) = SB(p), namely the observational entropy becomes the Boltz-
mann entropy.

Solution:
If all projectors have rank 1, namely Tr {II(z)} = 1, we can associate an orthonormal basis to the
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coarse-graining, and the observational entropy becomes

5%4(0) = =3 (alple) In {alplz) = ~Tr {pInp}.

xT

This means that the observations performed on the system are perfect: in fact, we are able to completely
distinguish any two microstates.
If the coarse graining is made of only one proectors, namely II(z) = I, the probability becomes p, = 1,

and we are left with
Sobs(p) = Ind,

with d the dimension of the Hilbert space. This corresponds to the Boltzmann entropy since the number
of microstates is d. This corresponds to the case in which our observations are useless: we only know
that the system is in some state, and, given our ignorance, all possible states are equally likely.

Exercise 3.23: Observational entropy and Shannon entropy

Let p(x) = II(z)plI(z)/p(x) be the post-measurement state given outcome z, w(z) = (x)/V (z) be the gener-
alized microcanonical ensemble, and Dxp = > I(z)pll(x) be tha average post-measurement state.
Show that
Sabs(p) = Ssn(p) = Dlp|Dxp] + ZP )|w(z)].

Solution:

Sbs(p) — Ssu(p pr Inp, + InV(x)] + Tr {pln p}

ST (T} e + V@) + T fplng)

= zm: [ﬁ {H(x)pﬂ(x) In (gg)} + P2 lnpw] + Tr {pInp}

==Y [Tr{pap(z)In (w(z))} + pz Inpa] + Tr {pln p}

= Z [p2Dp(2)|w()] — po Inpy — puTr {p(2) In p()}] + Tr {pln p}
= Z [p=D (z)] — p=Tr {p(z) In[pep(2)]}] + Tr {pIn p}
Using the fact that II(z) are projectors, we have

Tt {pInDxp} = 3 T {pn[II(e)pll(2)]} = 3 Tr {Il(2)pll(e) M@} pIL(x)]} = 3 Tt {pop(e) Inlp, ()]}

Therefore, we find
Sabs(P) — Ssn(p sz (z)] + D[p|Dx p]-

Exercise 3.24: Non-equilibrium temperature and associated entropy

Defining the nonequilibrium temperature 7;* through
Tr {H(A)p(t)} = Tr {H(A\)m(5;)}
show that the associated equilibrium entropy satisfies
T;7dS(B7, M) = dU () — Tr {[dH (M)]w (B M)}

where dU (t) = Tr {H (Aeqar)p(t + dt) — H(Ae)p(t)}.
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Solution:
Let’s start from the energy variation and use the definition of nonequilibrium temperature

dU (t) = Tr {H (Aerar)p(t + dt) — HA)p(t)} = Tr {H(Nrae) 7 (B aps Aevar) — HO)7(B; 5 Ae) }
= Tr {[dH (M\o)]m (87, At) + H(Merar)d[m (B, M)} = Tr {[dH (M| 7 (87, M)} + T3 dS (8], Ae)-

Shuffling things around we get the identity we were looking for.

Exercise 3.25: Recoverable work or how to extract work in a macroscopic way

Consider a process where the system at time 7 is put into contact with an infinitely large bath at temperature
T*, and afterwards the temperature T, and the driving protocol \; are slowly (i.e. reversibly) changed back
to their initial values 7§ and A\g. Importantly, we know only the average energy of the system (equivalently,
its nonequilibrium temperature), and cannot implement arbitrary unitary operations. Show that the extracted

work during this process is — [ dW?*(t), where the recoverable work is defined as

AW (t) = T {[dH (A (B, M)}

Solution:
Since the process is reversible, the entropy change in the system and the heat exchanged with the bath
are related though the second law as

dQ(t) = Tt*S(ﬁf, )\t)'

Crucially, here the entropy is simply the equilibrium entropy of the effective thermal state because we
only know the average energy, and thus the least assuming state is exactly the thermal one. Using the
first law and the result of Exercise 3.24 we find

AW (t) = dU(t) — dQ = dU (t) — T;dS (B, \) = Tr {[dH (M) (B, Ae)} = AW™(t)

W:/jd m(t):_/ofd )

Exercise 3.26: Observational entropy of classical system coupled to a bath

and, integrating over time

Consider the coarse-graining X = S ® Ep, with S = {|s)(s|} a set of rank 1 projectors on the system and
Ep ={ll(Ep)}, (ER) = 3 c(p, p1s) €)e| the energy projectors on the bath. The observatgional entropy then
reads
SS2F8 (psp) = Y Pe.ppl— Ipeg, + I V(Ep)].
s,Ep

Consider a classical nondegenerate system and label s = E,, where x denotes a microstate of the system.
Assuming that the global energy FE is fixed such that Eg = F — E, if the system is found in state x, identify
the observational entropy with the entropy production.

r

Solution:
Substituting the given choice of coarse-graining with the condition of fixed global energy we are left with

S(fligs)EB (pSB> = Zps[_ Inp, + an(E - Es)] = SSh[ps} + ZPSSB[E - Es]

which contains a contribution accounting for the system’s entropy, Ssh[ps], and a contibution accounting
for the bath’s entropy, >  p.Sp[E — E].

Exercise 3.27: Hierarchy of second laws

Using the relation between the remaining heat bath and the equilibrium entropy difference

S(67) — Sn(5) = [ L,
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prove that

ASS(T) — Q(T) - {ASS(T) — / dQ(t)] = kBD[ﬂ'B(ﬂ:)VTB(ﬁO)] Z 0

T() Tt*
' Solution:
G0 [T _ IO 4 5565 - S(62) = Sal55) — Sa(55) + o | Tm {Halpa(t +a) - p(0]}

Bs) —

= Sp(By) — SB(B;) + BoTrp {Hplps(T) — pB(0)]}
= S5(By) — Sp(B7) + BoTrs {Hp[rp(B;) — mB(6))]}
= SB(By) — SB(B;) + Bl (Br) — Bolds(Bs)

Assuming that the initial bath state is a Gibbs state at inverse temperature 5y we find

Dy [T sp(0) — Sm(85) + Bodn(52) — ol (0) = PuF[r(53)] — BoFlfo] >
0 t

Alternatively, we can write it in terms of a relative entropy as

=Sp(87) + Tr {mp(Bo)[BoHp + In Z]} + Bold(B7) — Boh(Bo) = —SB(B7) +In Zp + Boldp(B7)
=Sp(B7) + Tr {rp(B;)[BoHp +In 25|} = =Sp(B;) — Tr {mp(8;) In7g(5o)}
= D[rg(B7|75(6o))] = 0

Exercise 3.28: Cavity master equation

We model the photon echanges between the system with Hamiltonian Hg = hw.a’a and its environment with

the Hamiltonian
Hsp=Hs+h» gela+a)(by+bf) + 7> wiblby.
k k

The operators bz, by, are the bosonic field operators of the bath.
Derive the cavity master equation by using the Born-Markov-secular approximation (neglecting any Lamb
shift terms). Show that the cavity lifetime is

— = 47ng —wg) =4m /00 dwp(w)g(w)?6(we — w)

0

with p(w) the density of field modes. Do the rates obey local detailed balance?

Solution:
First we calculate the Hamiltonian in the interaction picture through the unitary U; = e!(HstHp)t/h

Noticing that

a(a’a)" = (aa")"a = (1 +a'a)"a — ae®'® = grelatl)g

we find 5 ‘ . ‘ .
Vsp = hz gr(e™@etq 4 eelal) (e~ ™rtyy, 4 ewktbl) =A®B

which is decomposed as A = e~®etq + etal, B = B, gi(e ™+ by, + e™*'bl). We can now calculate
the bath correlation function

Ct) = Tes (BOBO)ms} = 3 R2g2Tr { (e=tbybl + e5tLh)
=Trp TR} = Z I (e biby, + €“kb, by) z
k

with Zk = 1767%, Zk(l') = [1 — 671]71

= Z h2912< [eiwktNk —+ e_iwkt(Nk -+ 1)]

A 1 ,
W =2 i [ewz(—%zk +emint(1 -
k

; 022 )]

2y,

with N, = [ef"*r — 1]7! is the Bose-Einstein distribution at wy. The rates are given by the Fourier
transform of the bath correlation function

— 2772712 [Nib(w + wi) + [Nk, + 1]0(w — wy)]
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We can now use the secular approximation to write the master equation as

Aeps(t) = % {T(we) (20psa’ — {a'a, ps(t)}) + T(—we) (20" psa — {aa', ps(t)}) } -

Notice that since both w.,wr > 0, only the delta distribution with the difference of the frequencies
contributes. Therefore, calling the cavity lifetime

1
— =4 26 c P
~ m Ek 96 (we — wk)

we have

Ops(t) = L {[Nc +1] (aﬁsaT - %{GT%ﬁs(t)}) + Ne (aTﬁsa = %{aaT,ﬁS(t)}> } :

Tc

Going back to the Schrodinger picture we finally have

. 1 1 1
Ops = —Z[wCaTaypS] + - {[Nc +1] <apSaT — i{aTa,pS(t)}> + N, (GTPSQ — §{aaT7pS(t)}> } .
(6]
We can also verify that the rates satisfy the local detailed balance condition: when the system interacts
with one bath k, it can either absorb or emit the energy hwy. The ratio between absorption end emission
is
Ny — e~ Phwr — o= BAE
N +1

as expected.

Exercise 3.29: Positivity of strong coupling non-equilibrium entropy

Shot that the non-equilibrium strong coupling entropy production of the system and ancilla, namely

() = Ay - L - W =20

is equivalent to

sa(t) = Dlpsap(t)[m(SAB)(Ar)] = Dipsa(t)|mg ()]

Solution:

This is identical to Exercise 3.20: we first call SA = X.

Using the definitions and the fact that the entropy of the global state does not change due to the unitary
evolution we have

Y% =Tr{pxpllnpxp —Inmxp|} — Tr {px[lnpx —In7x]}
= —Slpxp®)] + Slpx )] + BTr {pxp() Hx (M)} + In Zx5(M\) — BTr {px () Hx (M)} — In 2% (M)
= —Slpxp(0)] + Slpx ()] + BTr {px5(t)Hxp(A )} — BTr {px (1) Hx (\)} + In Zp

= —BTr {mxp(Ao)Hxp(Mo)} —In ng;go) + Slpx ()] + BTr {pxp(t)Hxp(Me)} — BTr {px () Hx (M)}

= BW(t) —In Zx (Xo) + Slpx ()] — BTr {px () Hx (Ae)}
= BW () + BFx (Xo) = BTr {px () [Hx (Ae) + T px ()]} = BW(t) + BFx (ho) — BUx () — T'Sk (¢)]
= BW(t) — BIFx (t) — Fx(Xo)] = BAUx — BQ"(t) — BAUX + ASx = ASk(t) — BQ™(¢).

In particular, using that D[Trs {pap}|Tra {cap}] < D[pag|oag] one finds that X% (¢) > 0.

Exercise 3.30: Thermodynamics of a micromaser

To model the cavity dynamics under the influence of atoms we make use of the fact that the arom-cavity
interaction time 7’ is much smaller than the cavity lifetime 7., namely 7 < 7.. Thus, we treat the atom-cavity

dynamics as a CPTP map pf = Tra {UJcpg ® |eXel 4 U}c}, where p$ are the cavity state before or after
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Figure 4: Average cavity photon number, atom ¢ energy difference and atom i entropy difference as a function
of the number 7 of atoms that have interacted with the cavity.

the interaction, |e) is the initially excited state of the atom, and Ujc is the unitary time evolution from the
Jaynes-Cummings Hamiltonian, studied in Exercise 3.1.

(i) Assume the atom and cavity to be at exact resonance, and use the interaction picture time evolution
operator to derive

pt = Z e~ HsT' /N {sin(gtv/m + 1) sin(gtv/n + 1) |m + 1)(n + 1| +
+ cos(gtv/m + 1) cos(gtv/n + 1) [m)(n|} st by

(ii) Consider the initial cavity state pmn(0) = dmn Py (0), i.e. without coherences in the Fock basis, and show
that this CPTP map does not generate any coherence.

(iii) From here, show that the the cavity master equation derived in Exercise 3.28 reduces to a rate master

equation 0; Py, (t) = Y, RuynPp(t) with rate matrix

14N,

N,
[(m+1)bmt1.n — MO n] + —

7_C C

Ron [m(sm—l,n - (m + 1)5771,71]’

and the CPTP map can be written as Pt =" T,,, P, with transition matrix
Tyn = O c05>(g7' v/ + 1) 4 1 sin?(g7'v/n + 1),
which makes the probability vector P evolve according to

P(kr) = 7T - T P(0).
~——

k times

(iv) Use that the cavity state contains no coherences in the Fock basis to show that the atom state after the

interaction is

pa = Trs {UJCP§ ® leXel o U;c}
- Z [cos®(g7'v/n + 1) |e)e| + sin®(g7'v/n + 1) [h)(h]] P, .

(v) Study the dynamics numerically using w. /27 = 51.1 GHz, T = 0.8 K, which results in the mean occupation
number of the cavity N, ~ 0.05. Take the cavity lifetime to be 7. = 65 ms, the atom-cavity interaction
time to be 7/ = 9.55 ps, which satisfies 7/ < 7, the atom-cavity coupling strength to be g/7 = 47.9 kHz,
and the waiting time between two atoms to be 7 = 16.4 ms. As the initial state, take the thermal state
P,(0) = m,.

Solution:

(i) Translating the state into the interaction picture we have j& = Tra {UJCPE ® |eXe| ﬁ}c} In
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(iii)

Exercise 3.1 we calculated U j0, which reads

s = cos(tg/ W+ 1) eel-eosttg R0 Lol | M g+t TUNELED gy

where N = a'a is the cavity number operator. Then, we can use it to calculate the partial trace:

e| — ial sin(tgyv' N + 1)

T {Ticps  leely Ul } = Toa { [costta T F D X A2E

o5 elae] Lo}

which leads to

p§ = cos(tgV'N +1)pg cos(tgV'N +1) + Tsm(tfﬁ s Sm(tVQN—i\LUF e

Using the decomposition pg = >, prn [m)n|, and remembering that al jm) = vm +1|m+1)
and pg = etfst/hpge—iHst/h e finally arrive at the relation we were looking for:

ph = e RN o Teos(tgy/m + 1) cos(tgy/n+ 1) [m)n| +
+ sin(tgv/m + 1) sin(tgv/n + 1) [m + 1)(n + 1[Je"'s*/"

Considering the initial state p;,,, = 0yn Py, after the CPTP map we have

pE = e Hist/h Z [cosz(tg\/n + 1) [n){n| + sin®(tgv/n + 1) |n + 1)n + 1] P,eitlst/h
= Z [cos® (tgv/n + 1) [n)(n| + sin®(tgv/n + 1) |n + 1)(n + 1|] P,

n

where it is easy to check that (n|p&|m) = 0 if n # m. Therefore the CPTP map does not generate
any coherence.

The cavity master equation reads

Oups = —ifuxata ps] + - { e +1] (apsa = Jalaupst@)}) + N (alpsa = gaal pso) ) }.

Te

Taking the matrix element mn of this differential equation we find

1 1
Oupn = =il = 1)+ 2= { Vo4 1] (VG F DA Dt = 5+ ) )
1
N, (\/mnpm_1,n_1 — §(m +n+ 2)pmn) } :

If prn = OmnPn(t), for m # n the evolution gives 9¢pm, = 0 which means that no coherences are
generated. Then, we can write all the evolution in terms of a classical rate equation.

1
OPn = —{[Ne+ 1] (0 + 1) Pay1 = nPp) + Ne (01 = (n+1)Pn)} = D Bl

with rates
N.+1 N,
Rym = CT [(n + 1)5n+1,m — n(sn,m] + T_C [nén_l,m — (n + 1)5”77”] .

Instead, the CPTP map is determined by the transitions

Pl = cos®(tgv/n+ 1)P; + sin®(tgy/n)P,_1 = Z I ol 2

with

Ty = cos?(tgv/n + 1)6pm + sin2(tgﬁ)5n_1)m.
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(iv) We can use the same procedure done in point (i): we go in the interaction picture first and using

Ujc we find
N _ ~ . . esin(tgy/N +1) _ ~
s {Tcp5 @ elel Tl } = Tos { costtav W F Dy @ e — iat V2D o el 7 |

Crucially pg does not contain any coherence in the Fock basis, which means that only the diagonal
terms contribute after the trace over S. This leads to

74 = Trs {coslta VN T T)ps cosltay W T 1) @ el + a 2Ny ST 4 g

=" [cos*(tgv/n + 1) P leXe +sin®(tgv/n + 1)P; [g)gl]
ph = [cos(tgv/n+ 1) [e)e| + sin’(tgv/n+ 1) [g)gl] Py

n

(V) clc; clear all; format compact;

Tttt loTolo sttt lo oottt thhoTo oot

Do bt Initial data

par.wc = 2*pix*51.1e9; %Hz

par.Nc = 0.05;

par.tc = 65e-3; %s cavity relaxation time
par.ti = 9.55e-6; %s interaction time
par.tw = 16.4e-3; %s waiting time

par.g = pix*47.9e3; JHz
Do toTo %o 1o To To To o o 0o o o o o o o o o o o o o e e e e e e e e

n = 20; JHilbert space cut
P = initial_state(n, par);
N = 30;

[NPH, DUA, DSA] = calc_plot(n, N, par);

subplot (131)

plot (0:N, NPH, ’k-o0’)

xlabel ("Number of interactions", ’Interpreter’,’latex’);ylabel("$\langle n \rangle$
", ’Interpreter’,’latex’);

subplot (132)

plot (0O:N, DUA, ’k-0’)

xlabel ("Number of interactions", ’Interpreter’,’latex’);ylabel("$\Delta U_{A(i)}/\
hbar\omega_c$", ’Interpreter’,’latex’);

subplot (133)

plot (0:N, DSA, ’k-0’); hold omn

plot (0:N, log(2)*ones ([N+1, 1]), ’r--’)

xlabel ("Number of interactions", ’Interpreter’,’latex’);ylabel("$\Delta S_{A(i)}$",

>Interpreter’,’latex’);
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function PP = initial_state(n, par)
%Nc = 1/(exp(wc/T) - 1 ) -> exp(wc/T) = 1/Nc +1
z = par.Nc/(par.Nc +1);
ind = 1:n;
PI z. (ind - 1);
PP PI’/sum(PI);
end

function T = atom_cavity_interaction(n, par)
ind = 1:n;
mainD = cos(par.g*par.ti*sqrt(ind)) . 2;
mainD(n) = 1;
secoD = sin(par.g*par.ti*sqrt(ind(1:n-1)))."2;
T = diag(mainD) + diag(secoD, -1);
%check = sum(T(ind, :))

end
function TT = cavity_evolution(n, par)
ind = 1:n;
R = -(1+par.Nc)/par.tcx diag(ind-1) - par.Nc/par.tc*diag(ind) ;
R = R + (l+par.Nc)/par.tcxdiag(ind(1:n-1), 1) + par.Nc/par.tc*diag(ind(1l:n-1),
-1);
R(n,n) = -R(n-1,n);
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%check = sum(R(ind, :))
TT = expm(R*par.tw);
end
function PP = Nevolution(N, n, P, par)
T = atom_cavity_interaction(n, par);
TT = cavity_evolution(n, par);
M = (TT*T)"N;
PP = Mx*P;
%check = sum(PP)
end
function pe = atom_state(n, P, par)
ind = 1:n;
x = cos(par.g#*par.ti*xsqrt(ind)) . 2;
pe = sum(x.*xP’);
end
function [nph, Ua, Sa] = observables(n, P, par)
pe = atom_state(n, P, par);
ind = 1:n;
T = atom_cavity_interaction(n, par);
P = Tx*xP;
nph = sum((ind-1) .*P’);
Ua = pe-1;
Sa = -pexlog(pe) - (1-pe)*log(l-pe);
end
function [NPH, DUA, DSA] = calc_plot(n, Ni, par)
IND = 0:(Ni+1);
P = initial_state(n, par);
for i=0:Ni
[NPH(i+1), DUA(i+1), DSA(i+1)] = observables(n, Nevolution(IND(i+1), n, P,
par), par);
end
end
Y ) Y Y Yl ) ) Yo Y Y o ) o Yo o Y /o o o Y o o i ) ol

Exercise 3.31: Second law with particle transport

When the system exchanges both energy and particles with the baths, the heat flowing in bath v is defined as
), = — [dU,(t) — vdy N, (t)]

and the entropy production (for infinitely large baths) then reads

S(t) = ASs(t) = 3 Q;(t).

Show that it can also be written as

E(t)=D lPSB(t)

ps(t) ®EV(BV7ﬂV)]

v

[ Solution: ]
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D [pSB(t) ps(t) ®Ey(ﬁy,uy)] = —Slpsp(t)] = Tr{ps(t) Inps(t)} — Tr {pB(t) 1ﬂ®5u}
: —S[ps5(0)] + S[ps(t) +ZT&«{ uVN)HHZV]}
= ASs(t) — ®HV+ZB,, o N, ()] +1nZ,]
= ASs(t) +Z =Bu[Uu(0) = p N (0)] + B, [U () = s Nu ($)]]

= ASs(t) + Z By AU, () = j AN, (1)] = ASs(t) = Y BrQu(t) = S(t)

v

which imples X(¢) > 0.

Exercise 3.32: Jordan-Wigner transformation

The Jordan-Wigner transformation maps a set of N fermions with annihilation operators f; to a set of Pauli
matrices f; acting on different spins with a tensor product structure.
Show that the operators ~

fizo’z®...®gz®0'_®]]:®...®]l
1—1 —1

satisfy the anti-commutation relations { f;, fj} =6, {fi, f;} =0.

Use the identity Z,ICVZO = 2V to show that the Hilbert space dimension of N spins equals the Fock

N
(i
space dimension of N fermions.

Finally, confirm that the system-bath Hamiltonian

Hgp = Hgs + Z ekc;rcck + hz (tskdlck + t:kcldév)
k sk
has the desired tensor product structure after the Jordan-Wigner transformation as

Hsp=Hs®Ip+1Is® Zek’élék‘ — ﬁz (tskdi ® Ck —|—t:kcis ®5Tk> .
k sk

Solution:
Remembering that the Pauli matrices are

(1 0 (00 /01
%=\o -1)> 77\t o) “+*7lo0 o0

we have {0,,0+} =0 and {0_,0,} = L. Then, we can calculate, for i < j:

{ffi}=1®- - ®l®0_ 0,80, Q0. Qr_QI® - QT+
S——— S—

i—1 N—j

4+I® - R®IR,0_Ro, P Ro, Ro_RQI®---RI=0
‘Vl N"'.
1= —J

(7, i} =1® - ®180.0,80,® - R0, @0, QI®--- T+
N— N—

i—1 N—j
+I® - ®Il®r,0-®0,®  ®0, 0, QI®---®I=0
T N
i— =j

And we are left with the case i = j.

{f“fi}=H®j~;®ﬂ®{a_,a_}®ﬂ®1~v-i®ﬂ=0
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{fi, £i'} :mj';M@{a—’ﬁ}@m&f@H:H®N

The Fock space of N ferrmions is determined by the direct sum F = @gzo Hp v where H,, v is the
Hilbert space with n fermions out of the N initial ones. The dimension on this Hilbert space, since
the particles are industinguishable, is equal to the number of ways to select the n fermions, namely

N!/(n!(N — n)!). Then, the dimension of the Fock space is dr = ZN N

0 = 2V which coincides
=0\ n

with the dimension of the Hilbert space of N spins. Therefore, the Jordan-Wigner transformation is an

isomorphism bewtween these Hilbert spaces.

We order the spins Hilbert spaces such that all the d, come before the c;. Then, the terms dfd, and

czck become

dzds — ®(-1) e [®(8max—s) ® ]I®kmax7 C;rch —y [®smax ®F=1) R0, ® IO Fmax—Fk)
while the other terms become

diey = [0®(s—1) ® 0y ®H®S—5+K} [0;®S+k—1 Qo ®H®K_k] — 1% Q00,908 Qo_ @IOKF

z

which leads to _
dick =-I1%*"1R0, 02 ® o_ QI®K* = _dl ® &
~—
S+k

with d acting only on the first S spins and ¢, acting only on the last K spins. This separation is similar
to the system-bath separation, with the difference that now the operators ds and ¢, commute.

Exercise 3.33: Single-electron transistor: master equation

Given the system-bath Hamiltonian

Hsp =eod'd+ > > {@kcikcuk +h (t,,dec,,k + tzkcikd)}
v=L,R k

derive the following master equation for the empty (filled) E (F') probabilities
a (pr(t)) _ —[1 = fuleo)]  fuleo) | (pr(t)
i (pE(t)) =2 Tule) ( L fleo) —fu(eo)> (pE(t))

by employing the weak coupling and Markov approximation.

Solution:
First, we need to go in the interaction picture. For fermionic operators we have

(d'd)"d' = df (dd")" = dT(1 — dTd)" — ptzd'd gt _ gt iz, —izd'd
Additionally,
(d2=0— dte—izdld _ gt _ gizd'd gt —izd'd _ gt iz
We can use these relations to calculate the Hamiltonian in the intaction picture by transforming it with
the unitary U; = e(Hs+Hz)t/h.

V= hz (tudecykei(“’O_w”’“)t < t,ﬁkclkde_i(“’o_””’f)t) .
vk
We want to decompose this Hamiltonian as Ag ® Bpg, so we Jordan-Wigner transform it, see Exercise
3.32, and obtain
7 = <hY (tud @ e oot 4 g1, d @ &l e omnn)t)
vk

in which we identify

Ag = dtetwot 4= &e_iwot, Bp = —ﬁz (tykéyke_iw”kt = t;kéikeiw"kt> .
vk
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We can now calculate the bath correlation function by remembering that only the terms éykélk and
élké,,k contribute after the partial trace.

C(t) = 123 [tk Trp { (e el + il an ) ma }
vk
Using that

1

1 4 eBle—n) = f(e)

—B(e—p)c'e 1 1
7 e - - 14 e Ble=m)y =
Trp {c c Z } ﬂaean ﬂaeln( +e )

gives the Fermi distribution, the bath correlaiton function becomes
C(t) =k [tukl? [T (1 = for) + e fin]
vk
Now we can calculate the Fourier transform
1 w
I(w) = 33 / C)e™tdt =2m > [turl® [(1 = fur)d(w — wor) + furd(w + wir)]
vk

which determines the relaxation rates of the dynamics. Now we can look at the Born-Markov master
equation before the secular approximation:

dips = »_ T(w)e' @) [A(W)ps A (w) — AT(w)A(w)ps] + hec.

ww'’

where we use the Fourier components of Ag = Y A(w)e ™. In particular, since A(wy) = d and
A(—wp) = df, the product Af(wp)A(—wo) = d'd" = 0 vanishes because of the fermionic nature of the
operators. Furthermore, decomposing pg into the fermionic operators we have pg = ad'd + Bdd', which
means that A(wp)psAT(—wo) = 0. Therefore, having only one fermionic operator d selects the frequencies
w = w’ without requiring the secular approximation.

Then, neglecting the Lamb shift, the master equation becomes

Ops = T'(wo) [265/%&T —{d'd, ﬁs}} + I'(—wo) [QJfﬁsJ— {dd', ps}

Calling the bath-induced relaxation time
| 2
== > dmltul*6(wo — wik)
v k

we can write the master equation as

Oips = zy: (%:(GO) {Jﬁscﬁ — %{Cﬁd, ﬁs}} + %ﬁo) [CZTﬁSJ— %{CHT’ﬁS}D

Since there cannot be coherences between states of different fermionic number, the master equation
reduces to a classical rate equation. Calling the empty (filled) state |E) (|F)) we get

OpE = Z <—1 —~ fV(GO)PF - @PE)

14 v
v

(9th _ Z (_1 — fV(GO)pF + fV(EO)pE>

7 Ty

v

which can be summarized as

s -2 (FoFEN (=),

7




Exercise 3.34: Local detailed balance with particles exchange

Consider a rate master equation dip, = > Y Rypy describing both energy and particles exchanges. Assume R,
was derived from a system in contact with an ideal single heat bath with temperature 7" and chemical potential
. Prove that the following relations are identical

E—¢;,N—n;)—Sp(E —¢;,, N —ny)
kp

7Rry — 675[51*51;*#(”41*”1/)]’ 7R/J’.y = exp SB(
Ryz yx

Solution:
The differential form of the first law states that

dU = TdS + pdN — TdS = dU — pudN.

Taking the partial derivatives we can determine the temperature and chemical potential, indeed
= = 0uSs|n, 2 = OnSBlU-
T T

Then, we have

Sp(E — €z, N —ng) —Sp(E — €y, N —ng) + S(E — €, N —ng) — Sg(E — ¢, N —n,) =
=0y Sp|n(€y — €z) + ONSBlu(ny — na) = —Bléz — €y — p(ne —ny)].

Exercise 3.35: Single-electron transistor: entropy production

Consider the single-electron transistor described by the rate master equation found in Exercise 3.33, and prove
that then entropy production rate ¥ is non-negative in the steady state.
More generally, assume that you have a quantum master equation of the form

Oips(t) = H&PS |+ ZDVPS

with D, Zs(8,, 1) = 0. Show that the entropy production rate

() = £8lps(] - 3 2 > 0

Solution:
From Exercise 3.33 we know the rate master equation:

2 () =S (I far 260 (=9),

from which we can find the steady state:

_ ZVFV<1_fV) _ ZVFVfV
PE= 7 T —= ~ —» PF= =+ -
Eu FV ZVFV
The particle current from bath L is then
TrfL[l — fr] = Tr[l - fLlfr fr—fr
L =1 —1- =T =IPre——=m0r.
o L(fipe — [1 — frlpr) L ST, Ll Ry =

Because of tight-coupling, the energy crrent from bath L is simply I = egI%,. Then, we can calculate
the entropy production in the steady state:

x= ZﬂuQu = —[Br(eo — pr)Iy; + Brleo — nr) 3] = [Br(eo — ur) — Brleo — ur)l I3z

The sign of the entropy production rate is determined by the product

(@ —y)[fly) — f(x)] >0 Vz,y because f(x) is decreasing.
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> = —Tr{dplnp} — Y B, Tr {(Hs — 1. Ns)D,p}
i -
=+ T {{Hsspfhp} — ;Tr {D,Inp} + ; [Tr {D,pInE,} + In 2, Tr {B;p]]
= ZTr {D,p[InE, —Inp|}.

We now define the CPTP map &,p = e*Pvp such that £,Z, = Z, and £,p — p ~ dtD, p. Then, we have

3 _ .1 =
3= ZTr {D,p[InE, —Inp]} = dltlglo e ZTr {[Evp — p][InE, — In p]}
1

= dltlglo — Z (Dp|EL] + Tr {&€ p[In&ELE, —In&Evp+1In&p —Inpl})

v

o1 - = dtD,p >
_ ;;glodt;(D[p|_y] D[5VP|5u~u]+Tr{(p+dtDup) i +o<dt>})

= ¢ 1 2 — = 2)) — 1 i =21 — =
= Jim = Z (DIpIE.] = DIEIEE,] + TdadtPrp] + O(dr?)) = lim — Z (D[pI2.] - DIEIEEL)

Now we can use the monotonicity of the relative entropy under CPTP maps: Dlp|o] > D[Ep|E0o] to
prove X (t) > 0.

Exercise 3.36: Coulomb-coupled quantum dots
Consider tha system Hamiltonian
Hs = esdlds + epdhdl, + Udldsdl,dl,

describing two Coulomb-coupled quantum dots. These dots are coupled to baths as follows

Vs + HE = 3 > ewnchicnn + 1 (tdbens + e, ds) |
v=L,R k

VSDB + Hg = Z [eDkCerjchk +h (tpdeDCDk + tEkC]bde>} .
k

Derive the rate master equation and check whether local detailed balance is satisfied.

Solution:
First we perform a Jordan-Wigner transformation as done in Exercise 3.32

Hs = esdlds + epdhdl, + Udldsdl b,

VégB aF Hg = Z Z [eukélkéuk — R (tvkdgéyk + t;kélk(i»s)] .
v=L,R k

VS%S’ aF Hg = Z |:5Dk6TDk5Dk —h (tDkCZTDéDk T tBkékadD)} ,
k

so that now the operators acting on different subsystems commute (instead of anticommuting). Then,
we go to the interaction picture through the unitary U; = e*(Hs+Hp)t/h remembering that

. -1—"~_4 -1—" = __ 8
ezwd dde izd'd _ de— @

we can write the interactions as

~ ~ . o N S ~ S gt 7
Vé?B = _h Z Z (tukdgcykel(ws-i-QdDdD wyk)t + tzkclkdse i(ws+Qd,dp Wuk)t)
T

~ = . 7 . 5 7
VSDB — _hz (tDdeDCDke’L(wD—‘ersds ka)t +tDkCTDdeel(wD+stds ka)t>
k
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S/D S/D

where A{) = U. Luckily, the interaction Hamiltonians are already decomposed as A~ ® B ™, with
A? S Jleiwmt (d‘jd‘; =F elﬂtd;di) =F czwe_iw’t (deTj =F e_iﬂt&;Ji)
with 2,z € {S,D} and = # z.

Bl = —h 30 3 (e e

veB, k

with Bg = {L, R} and Bp = {D}. Then, we can calculate the bath correlation function
Cwy( ) Trp {BB( ) ( )ﬂ-B} = 5a:ycwz( )

because Trp { chyka} =0 for x # y. Then, we have for the S part

CSS’(t) = Z Zh2|t k| Tr {( kc kem"’ct + éykélke_iw”kt> WB}
v=L,R k
- Z Z h2|t”k|2 (fukeiwl/kt = [1 - fuk]e_iwukt)
v=L,R k

with f,x = f,(Aw,) is the Fermi function of bath v. Similarly, we have

Cpp(t Zh2|tDk| (Fore™P+t 4 [1 — fpple™*Pxt).

The Fourier transforms of the bath correlation functions are straightforward and read

Tss) =21 Y Y [tk (ford(w + wir) + [1 = furld(w — wir))

v=L,R k

Tpp(w) =21 [tok|* (ford(w + wpk) + [1 — forld(w — wpr)) -
P

We can now use the frequency decomposition of the A% operators, A%(t) = > A%(w)e” ™!, and in
particular the fermionic nature of the A%(w) operators to reach the master equation

= 3 Tusl ) 245543 () - {45} (@) A5 (), 5}

without the need for the secular approximation. Calling

r, = 47TZ |tor|20(we — Wek), I‘IU = 47TZ |ter|20(ws + Q — wap),
k k

fo = follwy),  fU = fo(hw, + hQ)

we can write the master equation as
- - 1 -~ -~
dp= ) (ml ~ fa] [dz[l = nalpll = figld] — S{d}ds[1 = 7], ﬁ}} +
z=L,R,D
- ~ 1 -~ -
+mnPW—MMLWMMdMMW—mwﬂ+
- - 1 -~ -

+TY[1 - fY] [d g pigdl — —{dl ﬁ}} + TV Y {dlﬁzﬁﬁxdw = {dxdjcﬁmﬁ}])

Focusing only on the diagonal terms we find the set of equations

Owpor = (L[l — fr] + Tr[l — fr]) por + T'n[l — fplpie — Tfr + Trfr + nfp) por
Opie =Tpfopoe —T'p[l — folpie + (FE[l - fA1+181 - fg])pw (FUfL +T fR)plE
Owor = (TrfL +TrfR)Por — (CLfL + Trfr) por + TH[1 — fBlp1r — TH fopor

Owir = TLfY +T%fR) prie + Tofopor — (TL[1— fE1+ T80 — fE1+ T30 — fB]) prr
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4 Quantum Fluctuation Theorems

Exercise 4.1: Two point measurement: Abstract integral fluctuation theorem

In the framework of the two point measurement scheme with the observable X (\;) = > x¢II(x), with II(z;)
projectors, consider the initial state
0) = Z (o) (z
o

and an arbitrary set of weights pi(x,) such that Y p(z,)Tr {II(z,)} = 1. Show that

<€7 ln[u(mo)/ﬂ(mr)]>xox =1.

Solution:
The joint probability distribution reads

p(7,20) = Tr {II(a,) UTI(20)p(0)L(x0)U TL(z,) }

where U is the unitary evolution from 0 — 7.

(e~ ln@o) /=y = Z MEz;;p(l‘T,fo) = Z %Tr {T(2,)U (o) T(o)UT }

= Zu(xT)Tr {(z,)} =1

Exercise 4.2: Two point measurement: Time-reversed probability distribution

Consider the forward process discussed in Exercise 4.1 and its time-reversed process that begins with the system
being in the initial state
,Dtr Z,u Zr H@ xT

where the projectors Ilg(z,) = OTI(x,)©~" define the time-reversed observable Xeo(\;) = 3, #:Ile(x;). The

weights are taken to satisfy > u(x-)Tr {lle(z,)} = >, p(z,)Tr {l(z,)} =1.
Then, the joint probability distribution in the time-reversed process is

Por(0, ) = Tr {H@(xO)U@<T, 0)Io (2, ) p (0) o (2, ) UL (7, o)} ,

with Ug(7,0) being the time-reversed unitary evolution operator.
Show that

. w(zr) o
ptr(anxT) - M(Z‘o)p( T 0)'
Solution:
pir(o, 7)) = Tr {H@(ZL‘(])U@(T, 0)u (ZET)H@(ZBT)U@(T 0 ) Tr {H z.)U (7, 0) (o) U (7, O)}
W e

x‘raxo)

(o)
_ —”(xT)TT{H(xT)U(Ta 0)1(z0)p(0)(x0)U (,0)} =
(o)

Exercise 4.3: Two point measurement: Abstract detailed fluctuation theorem

Taking f(x) = —Inp(x), the probabilities of observing Af in the forward and backward process are

=Y 5(Af = [f(@r) = f@o)) p(zr,m0),  PuclAF) = 6 (AF = [f(0) — f(@:)]) pe(o, 27),

o+ ToX
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respectively. From Exercise 4.2, these are related through

P(Af) Af

P.(-Af)

which is called abstract detailed fluctuation theorem.
Show that, if

(@) pu(r) = p(0),

(b) the measured observable is invariant under time reversal, i.e. Xo(Ag) = X(Ao) and Xo(A;) = X(A\;),
(¢) the Hamiltonian in invariant under time reversal,

(d) the driving protocol is time-symmetric, i.e. Ay = A\, Vt € [0, 7],

then P(Af) = Pu(Af).

Solution:
Let’s first look at the definitions of the joint probabilities:

p(ar,20) = Tr {Il(z, ) ULo)p(O)Izo)U'} . pee(zo, z-) = Tr {To(z0)Uollo(wr)pu (7)o (ar)U }
Then, using the hypothesis given, we can write the time reversed probability as
P (@0, ©7) = Tr {IL(20) UL, ) p(O) (2, )UT} = p(wo, z7),

where we used that Ue = exp, [—# [i Ho(Ar—s)] = exp, [—% [, H(As)] = U. Finally, lokking at the
probability P (Af) we have

Pu(Af) = Y 6(Af = [f(z0) = f(z)]) p(wo, 27) = P(AS)

XX+

after a simple relabeling of the sum indices.

Exercise 4.4: Integral fluctuation theorem and entropy production

During the driving protocol the internal energy changes on average from the initial equilibrium values U (0) =
Tr {H(Xg)m(Ag)} to some final non-equilibrium value U(7) = Tr {H (X )p(7)} = W () + U(0), where W(7) =
o dtTr {[8:H(A\)]p(t)} is the work done on the system.

Let 8 be the inverse temperature of a fictitious Gibbs ensemble 7 (3, A;) having the same internal energy
as the final non-equilibrium state p(7), i.e. U(r) = U(BE,7) = Tr {H(A;)7w(BE, Ar)}, and choose the weights
(er) = e Brler—F(B7,A:)]

Show that

(e Prler=F (B AN +Bleo—F (B, 20)]y -1

€r,€0 K

and use it to show that S(8%, Ar) > S(5, Ao).

Solution:
Let f(e;) = —Inpu(e;) = Biler — F(BZ, \r)]. The detailed fluctuation theorem then reads

P(Af)e 2 = P (-Af) = (e2/)y =1
<e—l3i[er—F(ﬂi«\T)]+BS [60—-7’(587/\0)]> _ <e—ﬂ:[61-—-7:(5:7)\r)]+50[60—-7:(507>\0)]> —1

Since the exponential is a convex function e9*t(1=D¥ < ge® 4 (1 — q)e¥ Vg € [0, 1], then
e{=Brler=F(Br A +holeo=F(Bo2o)l) < 1 5 (—B%[e, — F(BE, Ar)] + Boleo — F(Bo, Ao)]) < 0

_ﬂ:u( :77-) + ﬂ:f( :77.) +ﬂ0u(0) - ﬂOF(ﬂ()a)‘O) = 8(503)‘0) — ’S( :?AT) S 0.

Therefore, the detailed fluctuation theorem implies the second law: when we start from a thermal state
and we only know the average energy of the system, the entropy increases.
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Exercise 4.5: Fluctuation theorems for strongly coupled open quantum system

Consider an arbitrary system-bath Hamiltonian of the form Hgp(At) = Hs (M) +Vsp (M) +Hp, with Vep(Xo) =
Vsg(Ar) = 0. Use the Hamiltonian of mean force HE(A;) to confirm that Fsp(A) = F&(M) + Fp, where
F&(A) = —kpTIn Z%()) is the strong coupling equilibrium free energy.

Show that the strong coupling quantum work fluctuation theorems

_ _aA T P(w) A g
Bw — ﬁA}-S — ﬁ(w A}-S)
<6 > € s Ptr(—w) €

hold.

Solution:
The Hamiltonian of mean force is defined by

ZsB e~ PHs

zZr=258 ¢ °
S ZB’ ng

= TI‘B {WSB} ,
from which it follows immediately that Fsg(A:) = F&(A¢) +Fp. Then, plugging this into the fluctuation
theorems for closed systems, namely

_ _ P(w) _

Bw\ __ BAF _ B(w—AF)
e =e , ———=¢

< > P, (—w)

we have
(ePv) = ¢=BAFS, _Pw) _ sw-ary
Ptr(—’U))
since AF = Fsp(A:) — Fsp(Ao) = AF§. Note that we required the interaction at the beginning and
at the end of the driving protocol to vanish so that we can write the initial states of the forward and
backward protocols as product states, Tsp = 7 Q@ 3.

Exercise 4.6: Integral entropy production fluctuation theorems and second laws

Show that the integral entropy production fluctuation theorem
—o/k _
<6 o/ B>x,,x0 =1, o=Ass— Zﬂu(ﬁ/a
v

imlpes the second laws:

E( ) = kBAS PS Z = Qu(t) = -Tr, {H(BV)[pu(t) - pu(o)]} ;

5(t) = ASs(t) Z >0, Q) =—(dU,(t) — pudi N, (1)) .

Solution:
We use the convexity of the exponential to find the inequality

<G> = <ASS - Zﬂv%l) Z 0.

Since Asg = —In 1; ‘; E‘Z;; , the average over all initial and final outcomes gives (Asg) = ASg. Additionally,

(qv) = —(e), — 68 — pw[ng, — n?,]) = —(Uu(7) = U,(0) — pu [N (1) — N, (0)]) -
If the bath and the system do not exchange particles N, (1) = N,(0), and we recover the second law

Qu( v
5(t) = kpAS|ps(t) Z 0 50, Q1) =T, {H”[ (t)—py(O)]}-
If instead we allow the system and the baths to exchange particles we recover the second law

2(t) = 885() - 2D >0, Q,0) = - (@0L0) - md X))
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Exercise 4.7: Exchange fluctuation theorem and particle conservation

Consider two interacting baths with Hamiltonian H(\;) =) H g) +V(A¢) in the time-symmetric case, namely

OHY 01 = HY) and OV (\)0~ = V(A,_,).
Then, the exchange fluctuation theorem holds

P(Ael,Aeg,Anl,Ang) _ 6Zu ﬁp(AEV*/—LVAnp)
P(—Ael,—Aeg,—An1,—An2) ’

Show that, if the total number operator Nwt commutes with the Hamiltonian at all times, [H ()\t),Nmt] =0,
then
P(Ael, AGQ, Anl, A’H,Q) = P(Aél, AEQ, Anl, 7ATL1)5(A711 + Ang)

Solution:
The joint probability of the outcomes is

p(eTA™, &7%) = Tr {II(e"A" ) UTL(%7°) p(0)IL(E7°)U T }

We now look at the total number of particles in a specific trajectory, and use the fact that the total
particle number operator commutes with the Hamiltnian at all times to find

(n] + ng)p(eA™, @) = Tr {fvth(zfﬁf)UH(gOﬁO)p(o)n(gﬂﬁO)UT}
= Tr {H(E’rr‘iT)UNtotH(EOﬁO)p(O)H(EOﬁO)UT} = (n + nQ)p(e"f", P70
From which we have
(Any + Ang)p(eTi™, &%) = 0 — p(e7i", &7°) = p(e7i", é)ﬁo)(sn;—ng,—(ng—ngy
Finally, we can now look at the the joint probability distribution

P(Ae,An) = Z 5(Aer — [€] — €9)6(Aey — [€5 — €3])5(Any — [n] —nf])x

e T, 00
T 0 —r =7 =0 =0
S 5(An2 - ['fl2 - n2])p(€ no.,emn )6n1'7n?,7(ngfng)
From which we recognize that P(Ae, An) o< 6(An; + Ang) from which we can conclude that

P(AEl, AGQ, A’Ill, Ang) = P(Ael, AGQ, Anl, —An1)5(An1 aF ATlQ)

Exercise 4.8: Dyson series solution to the BMS master equation

In the interaction picture, the Born-Markov secular master equation of a system in contact with one bath reads
1 - -
ps(t)= Sl ) [Sa()s(05L ) - 5SS, As(0}| = Das(0)

Defining the jump (super)operator as

T(@)ps(t) = Y ra(w)Sa(w)ps (t)Sh(w),

[

the Born-Markov secular master equation can be casted as follows

Oips = Lops(t) + Y T(w)ps(1)
Show that the Dyson series

Z Z /dt / dt; eﬁo(t tn)j( ) LO(tn_tn—l)...j(w2)6[10(t2_tl)j(w1>e£0t1ps(0)

n=0wnp w1

is the solution of the Born-Markov secular master equation.
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Solution:
We can take the time derivative of the DYson series and verify that it satisfies the BMS master equation

atPS Z Z

n=0 wy w1

/dtnl /dtlj ’Cottn ...

0:ps(t) = Lops(t) + Z J(w

U e / dty LoeLoE) T (wy,)efottntn=1) ... 7 (wy)eo (271 7 (wy)efo% pg (0)+

T (we)efolt2=t0) 7 (wy)efo pg (0)

Exercise 4.9: Moment and cumulant generating functions
Consider a probability distribution p(q) and its Fourier transform M (x) = [ dge'™p(q).
f dqq"p(q) for any n € N can be obtalned from the moment generating

Show that the moments (¢™)
function M (x) through
Np O"
x=0

Show explicitely that the first two cumulants (the mean value and variance) follow from the cumulant

generating function C'(x) = In M (x) as
0 02
K1 = =—i—C . ke =(?) — (@)% = (—i)? =—=C
1=(q) = o () ™ (@) —(@)" = (—9) o2 (x) —

Solution:

M) =" [ dag"e™p(a) — (<0 MO0,y = [ doasla) = ().

Since C(x) = In M (x) the first two derivatives are
O M (x) RMO) _ M)
0,C(x) = =% , 22C(x) = =X — ==X
O = "4t O =400 M2(x)

Noticing that M (0) = 1, we have
C() o = ila),  RCMI| =

0

k1= (q) = —i &C(X)

Exercise 4.10: Heat current from the full counting statistics

The counting field Liouvillian is defined as

_ »CO + Zj(w)e—ith7

and generates the dynamics of the full counting statistcs through

9eps(x:t) = L(x)ps(x; 1)
The corresponding moment generating function is obtained by taking the trace: M (x,t) = Trs {ps(x,t)}.
Show that, for the Born-Markov secular master equation describing a system coupled to one bath, the heat

current Q(t) = 9,{q)(t) is
Q(t) = —id; DM (x, 1) thra )Trs { ST (w)Sa(w)ps(t)},

and verify that it coincides with Q(t) = Trg { HsDps(t)}.
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Solution:
Let’s start from the time derivative

Trs {0:ps(x,t)} = Trs {L(x)ps(x; 1)} -

Since we are interested in the y-derivative around x = 0, we can expand the Liouvillian as
zEO—I—ZJ(w (1 —ihwy) = —zhxzwj
w
Notice that the dissipator D cancels out in the trace because

s (Po) = 3 rafe) s {8u)s1(w) - 351w, 01}
—Zm TYS{ o (W) Sa(w)o [1— % - %]} -0

for any o thanks to the cyclic property of the trace. Then, we are left with

Qt) = —i lim, iTrs {—ihxzwj(w)ﬁs(x,t)} = —NTrg {Z“j(w)ﬁsw’t)}
— _th’r'a(w)TI‘S {SL(W)Sa(W)[)S(t)} .

Remembering that the Forier component S, (w) satisfy the properties demonstrated in Exercise 3.5, most
importantly that

S:;(W) = Sa(_w)v [Sa(w)»HS] = hwsa(w) - [HS,SL(W)] = h(JJSL(W)
Then, we can use these relation to get rid of the Aw term as follows:
=3 ) Tis (sl Saw)ps(0)}
S C i { 5 (s, SL 150 (w) + LIS (). Hs) 7s(0)

- Z ’"‘*é“’ Trs { (Hs Sl (w)Sa(w) + SL(w)Sa(w)Hs — Sl (w) HsSa(w) — S (w)HsSa(w)) ps ()}

_ _Z’"aéw Trs { Hs ({S}(w)Sa (), 55 (1)} — 25a(w)ps(1)SL(w)) } = Trs {HsDps(1)}

Exercise 4.11: Fluctuation theorem and symmetries of the moment generating
function

Starting from the anti-Fourier transform relating the probability distribution and the moment generating func-
tion

1 o0 o0 .
pe(@) = o / dyy - / dxne XM (x, 1),

(2m)" J oo .
prove that

pt(( = exp <Z auqy> & M(x,t) = M(ia—x,t) Vx eR"

for M (x,t) analytic and decaying to zero for |x,| — oo.

Solution:
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(=) The moment generating function is the Fourier transform, so we have

0 o]
M(x, )—/dqpt( ) lQX:/dqpt(_q)eiQ(X—ia) :/ dql~-~/ dag, py (—q)eax—i2)

—00 — 00

=/ dq - / dgype(q)edxFia) = /dQPt(Q)eiq(_XHa) = M(ia —x,t)

(<) We can use the analyticity and the asymptotic bechaiour of the moment generating function to
change the integration contour in the complex plane and obtain

pla) = o [ M) = / dxe*l‘“Mua— )

L
(2m)"

=i (271r) / D V() M (€,1) = e¥pi(—q).

Exercise 4.12: Symmetry of the counting field Liouvillian
Given the counting field Liouvillian £(x) =", L. (x») = >, (Low + Y, To(w)e~ X)) where

Lop =3 " 61, @500 ). ). (99 = 3 rasle)San @IS ),

oaw

prove that

L(x —iB) = LX)"

Solution:
Remembering that the rates r,, (w) satisfy local detailed balance

Taw (W) — Puhw
Taw(—wW)

and that the Fourier components of the interaction satisfy S, (—w) = S}, (w) we have

Lx—iB)p = Z (ﬁoy + Z T (w iwﬁvfw) p

LOVP"’ Ze zhwxu u(w)e—ﬁthsav(w)psly(w)>

) ol e-iwm—w)s;,,<—w>psw<—w>)

rvrow

23

rvow

_ Z (
( (@)Sa (@), 9} + e“wrww)s;(w)psaxw)) — [£Godl"

Since L(x —iB)p = [L(x)p]" for all density matrices we identify L(x —i3) = L(x)'

Exercise 4.13: Full counting statistics of single-electron transistor

Consider the single-electron transistor from Exercise 3.33 for 8;, = Sz = 8, for which the dynamics is described
by the rate master equation

it (oet) =m0 (V00 5000) Gote)

For simplicity, set I';,(eg) = Tr(eg) =T, pur = €0+ V/2, and ur = ¢g — V/2.
We are now interested in counting the number of electron jumps n, from bath v = L, R into the system.
The state of the system conditioned on n = (ng,ng) jumps is denoted by p,(¢t|n), with ¢ = E, F' denoting the
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state of the quantum dot (empty or filled). Since the number of electron jumps is discrete, n, € Z, we define
the counting field by

d d
Zem" (tm) & po(tn) = / XL/ DL =X p, (x, 1),

with X = (XLa XR)

(i) Deduce that the master equation with the counting fields reads
a4 (pr(x: 1)\ _ ST —[1 = fu(eo)] eix”fu(ﬁo)) pr(X;1)
dt \pe(x1) ~ e"™[1—f,(e)] —fu(eo) re(X:1))"

(ii) Compute the two eigenvalues Ay (x) of the rate matrix with the counting fields and confirm that both
obey the symmetries

BV BV
A+(XLoXR) = A+ (XL — xR, 0), A+(XL.XR) = Ax+ (XL +Z%, —XR — ZﬂQ) .

Show that the first symmetry imples at steady state the conservation law ny + nr = 0, while the second
one implies the exchange fluctuation theorem P(Any)/P(—Any) = e Plir—nr)Ans,

Solution:

(i) From Exercise 3.33 we recall the Born-Markov master equation in the interacting picture:

oups = 3 (LA st - tdtd st + A0 s - G4adt ) )

v

Crucially, we are now interested in counting the particle exchange, so the counting fields Liouvillian
becomes

—fv fv

dpdT —iXv +

L(x)p = Z (501//) + dTPdelX”>

v

from which we can derive the rate master equation with the counting fields by using (F|p|E) = pp
as well as (F|dd’|E) = 1 and analogously for F.

wsloc) = X (2wt + L e )

v

Oipr(x,t) = ( - f"pp(x, t) + %eix"pE(x,to

v

v

which, after imposing I' = 1/7,, can be summarized as
d ( ) ZF ( — fu(€o)] eix”fy(eo)) (PF(XJ)) '
dt XL fuleo)]  —fuleo) ) \PE(X:?)
(ii) We now find the eigenvalues of the rate matrix

(fr+ fR+AA+2— fL— fr) — (€XF fL + eXP fr)(e X [1 — fL] + e XR[1 — fg]) =
N 42X+ 2(fr + fr) — (fo + fr)? — fu(1— f1) — fr(l — fr)+
—e!XrR=XL) fpl — f1] — X TXR) 111 — fR] =0
A% 42X + [fL(l — fr) (1 - eim—m)) + fr( - fr) (1 - e“XR—XL))] =0
A +204Cxe = xr) =0 = Ax = =1+ /1= C(x — Xr)-

Notice that the first symmetry is satisfied because the eigenvalues only depend on the difference
XL — XR-
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For the second symmetry, we realize that

—B(eo— _
N S G T B M S

e—Bleo—pr) € 1-fr fL

Therefore, applying the transformation to C'(xr — xr) leads to

C(xr — xr) = [fL(l — fr) <1 — %ei(“_’“o + fr(1— fr) (1 — Hei(“_“)ﬂ

C(xr — xr) = C(xz — Xr)
meaning that leaves C, and consequently A, invariant.
The formal solution of the rate master equation with the counting fields is

R

where A is the matrix defining the dynamics, v are the eigenvectors relative to the eigenvalues At
and the coefficients a4 are determined by the initial condition. Then, also p, (X, t) obeys the same
symmetries as Ar. This means that the moment generating function is M (x,t) = Trs {ps(x,t)} =
pe(X,t) + pr(x,t) is a function of the difference of the counting fields, M (xr — xr,0,t). We now
can think of looking at the statistics of ny + ngr by considering the transformation of variables:

XL+ XR
§=—F—

g (=XL—XR

from which follows that the moment generating function does not depend on &, which leads to

< nr, +ngr
2

) ) x OfM =0, n>0.

This means that ny, +ng = 0.

On the other hand, the second symmetry means that
M(x,t) = M(=x +ifp,t).
Therefore, by using the result of Exercise 4.11 we have

P(nL) — eB(VnL/Q—VnR/Q) — eBVnL _ eB(ML—MR)”L
P(—TLL)

Exercise 4.14: Cavity master equation with one jump operator

Consider the cavity master equation derived in Exercise 3.28. Show that it reduces to

Dups(t) = Tps(t)! — L {1 ps(t)}

in the limit Shw,. — co.

Solution:
The cavity master equation is

dips = —ilwea'a, ps] + Ti {[Nc +1] <CLPS¢1Jr - %{GTG,PS(U}> + N <aTPSa - %{GGT,Ps(t)}> } :

(&)

. Ay .
with N, = 2 Y20 so we are left with

1
eBhwe —1

. 1 1
dips = —ilwea'a, ps] + = (flpsaT - §{GTG, Ps(t)}> :

@

In the interaction picture this reads

- 1
Oips = Jpsdt — §{JTJ7 ps}
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with J = \/% represents the decay to the ground state due to spontaneous emission.

Exercise 4.15: Master equation and quantum measurement process

Consider the average post-measurement state pg(t + dt) = (Mo + Mi)ps(t), with
Jt JtJ
Mop = Tpdt = JpJidt,  Myp = (1 _ 2dt> ) (1 - th)

Show that for infinitesimal dt the time evolutions is identical to the prediction of the master equation.

Solution:

dt
p(t +dt) = (Mo + My)p(t) = JpJTdt + p — 5{JTJ, p} + O(dt?)
1
Op = JpJ" = S{J"J, p}

Interestingly, by considering the Kraus representation of a POVM { K}, the post measument state is
p =Y M = YK K]

_ _ 1 _
pt—p :Z<Kip Kl - S{K]Kip })

%

so when the probability of a measurement becomes infinitesimal, one can cast the above equation as a
differential equation.

Exercise 4.16: Master equation and stochastic Schrodinger equation

Given the stochastic Schrodinger equation

A0 = [dn(t) | = 1) + 5 (T g — ') | o0
(1T )

with [dn(t)]> = dn(t), Ey@ldn(t)] = (JTJ)y@dt and (X)yq) = (©()|X[4(t)), consider the density matrix
o = |[¢(t)) 1 (t)| and show that

Jo(t)Jt

do(t) = dn(t) {WM)

— a(t)] + dt [(JU)UU)o(t) - %{JTJ,U(L‘)}

and use it tho derive
ps(t) = E[o(t)],

namely that the density matrix obtained from the master equation is the expectation value over the ensemble
of quantum jump trajectories generated by the stochastic Schrodinger equation.

Solution:
Since o = |1 (t))1(t)| we have

do = [dp @)X ()] + [V @)Xd ()] + |dy ()XY ()],

where in the last term only the term [dn(t)]?> = dn contributes at first order in dt at the level of the
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expectation value. Therefore, we have

5 = [dn(t) (% - 1> + & (. -t

Jt )

W dt st gy gt NV SR A B S
o d(t)( =T 1> 2((J Jye — JTJ) +d(t)< T 1) ( = 1)

do = dn [% - a} + dt [(JTJ>UJ — %{JTJ, g}] :

Taking the expectation value of this equation we find

ZAk { T Yo, [éf;‘;:k —ak} +dt [(JTJ>gkok -~ %{JTJ, ak}]}

= dtZ)\k {Jokﬂ - —{J*J ok}}

dp = dt (JpJT — §{JTJ, p}>
where we used that the average over the ensemble of quantum jump trajectories acts as

o) % > Me(0)Eq, ) - [Eyyvan o] ZM on(t
k

Then, since E[o(0)] = p and they obey the same differential equation they coincide at all times

Exercise 4.17: Stochastic Schrodinger equation preserves purity

Show that

o i
do(t) = dn(t) {m _ J(t)] +dt {(JU) () - ;{JTJ,J(L‘)}}

preserves the purity of a state.

7~

Solution:
A pure state satisfies p? = p. Therefore, let’s look at o(t + dt)? assuming that o(t) is pure:

ot + dt)? = (a(t) +dn(t) [M _ a(t)} +dt [(JU)U(t)o(t) _ %{JTJ, a(t)}] ) 2

(JTT)o(t) i
=o(t) +dn {% - a(t)] +dn { [% - J(t)] ,a} +

+dt { [(JU} o) — %{JTJ,o(t)}] ,0} +0(d2)

t 72 1
=o+dn ([ JoJ } - 0’) + dt <2<JT,])UU = E{JTJ’ o} — U,]TJU)

(J1)o

JoJt Jo gt B JoJT
(J1.J)2 (JT )

Crucially, since o is pure it can be written as 0 = |z)(x|, then, one notices that

oJVJo = |x)x| JTJT |zXz| = (JTT)eo

za(t+dt)+dn( ) +dt ((JTJ>UO'—0'JTJO').

which makes the dn and dt contributions vanish, leaving us with
o?(t) =o(t) = o (t+dt)=o(t+dt)

which means that, as long as the dynamics starts from a pure state, the state will continue to be pure.
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Figure 5: Single trajectories and enseble averages for the stochastic Schrodinger equation of a low-temperature

cavity. The initial state was chosen to be a'a [1(0)) = 4]1(0)) .

Exercise 4.18: Comparing master equation and stochastic Schrodinger equation

In Exercise 4.14 it was shown that the master equation of an open cavity in the low-temperature and high-

frequency regime is determined by one Lindblad operator J = /ya for some rate .
Show that the average number of photons in the cavity decays exponentially to zero:

(a’a)(t) = e " (a'a)(0).

Reproduce the behaviour using the stochastic Schrodinger equation.

Solution:
From Exercise 4.14 we read the master equation:

1
Op = JpJT = S{J" . p}
with J = \/LTT To calculate the average photon number we can start from the derivative

(3

on(t) = 0, Tr {alap} = Tr {aTa (
since the system Hamiltonian is H = w.afa. Since
i L taaoa’ — ataat L ot t i L t
Tr{a a’Dp} = —Tr{a aapa' —a'aa ap} = —Tr{a a'aap—a'(1+a a)ap} = ——Tr{a ap} ==
Te Te Te
we have the differential equation d;n(t) = —n(t)/7. which is solved by the negative exponential
n(t) = e~t/en(0).

import numpy as np

from qutip import *

import matplotlib.pyplot as plt

HAHHHHBAH AR HHR AR AR HHB AR BB B R HH AR R AR AR ABH B RS R RH B RSB R AR RSB R R RSB R RSS2 H

N= 5; # Cut of the Hilbert space

a = destroy(N); # Annihilation operator
ad= create(N); # Creation operator

n = num(N); # Number operator

HUARBHBRARBERHBRARBBRB R BB B BARHBRRBBARHBRBHBERHBRBRBERSHBRAR B BB HBRRHBRRHH
def evolution_step(J, sigma, dt):

Jd = J.dag();

JdJs Jd*J*sigma;

sJdJ sigma*Jd*J;

sigmaF=sigma;

avg = JdJs.tr();

pjump = avg*dt;

rnd = np.random.random() ;
if rnd<pjump:
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h[H, p] + Dp) } = —%Tr {la'a, H]p} + Tr {a'aDp} = Tr {a'aDp}

n(t)
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sigmaF = J*sigmax*Jd/avg;
sigmaF+= dt*(avg*sigma - (JdJs+sJdJ)/2);
return sigmaF/sigmaF.tr ()

def evolution_tot(sigmaO, Ntot, J, dt):
nlist = np.zeros(Ntot);

sigma = evolution_step(J, sigmaO, dt)
for i in range(Ntot):

nlist[i] = (n*sigma).tr();

sigma = evolution_step(J, sigma, dt)

return nlist

def ensemble_avg(iterations, sigmaO, Ntot, J, dt):

Nensemble = np.zeros(Ntot)

for i in range(iterations):

Nensemble += evolution_tot(sigmaO, Ntot, J, dt)

return Nensemble/iterations
HUEHAHAHBHHEHEH AR A HHEHEHEH AR A HBH BB HEH R H B H BB SR H AR H B BB SRS H RSB H S H
dt = 0.01; # time step
tau = 1.; # cavity relaxation time
Ntot = 4x*int(tau/dt)

J = a/np.sqrt(tau);
sigmaO = fock_dm(N, 4); # Initial state

n0 = (n*sigmaO).tr();
times = np.linspace(dt, Ntotxdt, Ntot);

plt.subplot (121)
for i in range(5):
nlist = evolution_tot(sigmaO, Ntot, J, dt)
plt.plot(times, nlist)
plt.title(r"Single trajectories"); plt.ylim([-0.1,4.1])
plt.xlabel(r"time $t/\tau_c$"); plt.ylabel(r"$\langle a~\dagger a \rangle(t)$");

plt.subplot (122)
iterations = [5, 100]
for it in iterations:
Nensemble = ensemble_avg(it, sigmaO, Ntot, J, dt)
plt.plot(times, Nensemble)
plt.plot(times, nO*np.exp(-times/tau), ’k’)
plt.title(r"Ensemble averages"); plt.ylim([-0.1,4.1])
plt.xlabel(r"time $t/\tau_c$"); plt.ylabel(r"$\langle a~\dagger a \rangle(t)$")
HUHAHBRARBAAHBRARBEABHRARBBARHBRBRBARBHBRABRBARBHBRARB AR BRARBRAHHRARHBRHHH
plt.show ()

Exercise 4.19: General stochastic Schrodinger equation
Show that the unraveling of the master equation of the form
)

ups(t) = 3 H.ps(0] + 3 (Dos 7] — 311 ps(0}).
k

which contains a coherent part H = H', and multiple jump superoperators Jips = JkpSJ,z , leads to the
stochastic Schrodinger equation

a0 = 3 {ane®) | 2 1) + 5 (UTdu — L) 100 — e H (o)
k <Jka>w(t)

where the point process is defined by
dny,(t)dny(t) = Spdng(t),  Eynldne ()] = (T ) dt.

Solution:
Consider a jump detector described by the set { Mg, My}, with

Mup = JppJidt — My, = JpVdt
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and M completing the CPTP map through

dt
M{Mo+>  MIM, =T — M{My=T—dty_ JiJy — Mo =1— —ZJ,IJk
k k k
such that the detector map is a CPTP map at the first order in dt. At each time step dt, the detector

can detect a jump k, meaning dny(t) = 1, causing the collapse of the way function. Since the probability
of seeing the jump k in the time step dt is

Pramp ke = Eldni(8)] = (J] J)dt

for sufficiently small dt at most one jump will happen: dng(t)dn;(t) = dgidny(t). If instead no jump k
happened, the detector acted through M. On top of that, we also have to consider the unitary evolution
induced by the Hamiltonian. For the moment, let’s write the latter as the superoperator ¢/, such that
the state at time ¢ + dt reads

(6 + dt)) Z P 0/ Z dny | 20 [ 0) = % Do T [ (0)
<Jka>w(t) \/1 — dt 3 (T k) gy + O(dt2)

b(t + dt)) Zdnku T [(t)) 1- Zdnj < (1)) + %Z (<J,1Jk>¢,(t) - J;Jk) |¢(t)>>
<J Jk>w(t %

We now consider the Hamiltonian evolution explicitely:

Ul) =) - - H 1) di

and neglect the quadratic terms in dt?> as wellas the terms dnjdt because the expectation value of dny
already scales as dt. Then, the state difference d |1 (¢)) is

400} ~ 3 dns DD _ ey | + a Gz(uzmm — TL) () ;Hw»)
(i Tkwe) k

From this, we can calculate the differential of the density matrix do = d[|v(¢) X (2)]]

JI JroJ! Ji
dU—Zdnk ko o+ il — 0+ KOk + o0 — ko — il +

Voiage — Vulnge Ve, .
+dt (;Z( (I I)eo = (T Ihs0}) = [H 0])

k
1 1
do = Zd Nk ( JTMU a> + dt (Zk: ((J,iJk>ga = 2{J,1Jk,a}> -+ A, a]> .

We can now take the expectation value over the ensemble of quantum jump trajectories. Crucially, the
expectation value over the last jump is done at o(t) fixed. This means that it acts only on dny through
Eo(yldny] = (JfJi)odt, which leads to

s i
o] = 3" A(0) {Z<J,1Jk>gj<t>dt (‘]W - oj<t>) 4
J k

(JZJk%j(t)

a (Z (19050 = UL ) = 51 ojor)]) }

k

dp=Eldo] = dt’y_ A;(0) {Z (iju)J,I - é{J;Jk,oj@)}) -1, aj<t>]}

j k
Oip = —%[H,p(t)] +) (Jkp(t)JZ - ;{Jngvﬂ(t)}) ,
k

which is the Markovian master equation.
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Exercise 4.20: Coherences do not affect the jump probability

Show that
Diump w () = 1, Trg {SlSwps(t)} dt = r,Trg {SLSMDHtpS(t)} dt,

where Dy, is the dephasing operator with respect to the eigenbasis of H;.

7

Solution:
From Exercise 3.5 we know that the Fourier components of the coupling are defined by

S, —ZH )STI(x 4 hw)

which means that

S1Sw = T(z + hw)ST(y)I(x) STL(x + hw) ZH )STSTI(2

Ty

Then, we can calculate

Trs {SLSuDup} =Y Tr {I(z)STST(x (k)} = ZTr{H )STSI(z)p} = Tr {SIS.p},
zk

which leads to the result we were looking for.

Exercise 4.21: Quantum stochastic heat

Starting from the separation of stochastic heat into a classical component and a quantum one,

dq = dgqu + dga = Trs {Hy[do(t)]},  dga == hwdn,(t),

use the stochastic Schrodinger equation from Exercise 4.19 to show that

i .
dgqu = Zdnw(t)TrS {SW — Hta(t)} + dtZT'WTTS {<SLSW>J(t)HtU(t) — HtSLSwa'(t)} .
w wPw/o(t) w

Solution:
Let’s start with writing down the trace. Notably, the commutator [H, o] entering do does not contribute
to the trace because Tr {A[B, C]} = Tr {[A, B]C'} with A = B = H and C = ¢. Then, we are left with

(o} = n r m f g — — f (o2
Tr {H[do]} Zk:d k()T {(JZJk>a }—I—dtZ"ﬁ{ (JII) e H H{.] Jk, }}

H 1
= " dny(H)Tr % —Hop+dt» rTr {<s,isk>c,Ho = lH{s,isk,o}}
k <Slc5k><f k 2

where we used Jx = /T Sk, with S being the Fourier components of the coupling Hamiltonians. The
latter, according to what we have seen in Exercise 3.5, satisfy

[Sw, H] = hwS.,, — —[S, H] = hwS},
which also imples that
SIS, H = S (hw + H)S,, = (7w + H — hw)S S, = HSIS, — [H,S1S.]=
Let us focus only on the very first term of the trace:

HS,08], 1 HS,0Sl,  S,oSIH 1 S, (H — hw)aS S o(H — hw)S]
Y e L — _Tr = _Tr -
(S58.)0 2 (SLS.)e  (SLS.)e (S58.,)0 (S55.)4

2
i i i
_ lTr Su{H,o}SL | i R lTr So{H,o}SL |
2 (S518.)s (S5S.)s 2 (S518.)0
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which can be used to identify the classical stochastic heat as

HS,oSl, S,{H,o}S]
dga = ;danr { (S:ﬂSw)U — 2(5’:56@)0 .

Finally, we can extract the quantum stochastic heat from the trace as

S.{H,o}S]
dgqu =Y _dn,Tr{ =222 — Ho o +dt Y r,Tr {(SLS.)eHo — HS[,Su0
" { 2STS.) } s }

where we used [H,S]S,] = 0 to get rid of the last anticommutator inside the trace.

Exercise 4.22: Quantum stochastic heat vanishes on average

Using the definition of quantum stochastic heat dgq, from Exercise 4.21, show that the ensemble average over
the quantum jump trajectories of the quantum stochastic heat vanishes, namely

E[dgqu] = 0.

Solution:
Since the expectation values over the very last step of the quantum jump trajectory is done at fixed o(t),
it acts nontrivially only of dn,, through

Eo (1) ldne ()] = 1., (S5, S.)dt.

Then, taking the ensemble average over all quantum jump trajectories of the quantum sotchastic heat
from Exercise 4.21 we find

Bld) = it 30y S e {5 DOt (5153000 H,0) (81200, Hos0) ~ HSL S0

_dtz/\ erTr{ {#, ‘;J( )}ST —HSlSwaj(t)} =0

due to the cyclic property of the trace and the commutation relation [H, S} S,,] = 0.

Exercise 4.23: Concavity of the Shannon entropy

Show that the Shannon entropy S(p) = —plnp — (1 — p) In(1 — p) for p € [0, 1] is concave.

Solution:
It is sufficient to show that the second derivative of S(p) is negative in the interval.

9pSlpl = —Inp — 14+ 1n(1 - p) + 1 =In(1 - p) — In(p)

267 = -+ 1
9,S[p] = - p<0 Vp € (0,1).

Therefore, he Shannon entropy satisfies
S(gz+ (1 - q)y) > ¢S(z) + (1 —q)S(y)

which means that mixing two probability distributions generates more entropy than the weighted sum
of the individual distribution’s entropy.

Exercise 4.24: From the integral fluctuation theorem to the 2"¢ law through
Jensen’s inequality

Use Jensen’s inequality to show that the integral fluctuation theorem (e~?) = 1 imples the second law (o) > 0.
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Solution:
We probably have already used Jensen’s inequality to find this result in a previous exercise. Nonetheless,
since €® is convex, we have eP*+(1=P)¥ < pe® 4 (1 — p)e¥ which allows us to write

l=(e %> & —(6)<0 — (o)>0.

Exercise 4.25: Thermodynamic uncertainty relation for entropy production

Assuming the detailed fluctuation theorem of the form

and defining
Qo) = (1+e9/k2)P(5), foro € [0,00)

2= (o) = (otanh (2,;‘3)>Q (%) = (%),

where (---) ({---)¢) denotes the average with respect to the probability distirbution P (@Q).
Finally, show that

show that

(0?) > 2kpX.

Solution:

(o) = /zap(a): /Odocroa[P(J)—P(—cr)] = /dO;UP(a)[l—e_”] = /éio;JQ(o) tanh () = <Jtanh%>Q

—oo 0
(0?) = /dO'O'2P(O') = /dc702[P(0) + P(—o0)] = /CZO’O’QQ(O') = (0%)g-
—oo 0 0
The thermodynamic uncertainty relation stems from

Nl

(0%) = (0%)q = (45 7)o = 2o tanh 7)o = 25

were we used x > tanh z for z > 0.

Exercise 4.26: Equivalence between fluctuation theorems

Recall the exchange fluctuation theorem (see Exercise 4.7)

P(Ae, An)

m — eXp zy:ﬁy(Aey — /‘LVAny)

and define the stochastic entropy production o = kg ), B, (A€, — pAn,).
Which measurement results define the trajectory v? Show that the fluctuation theorem

/i — PO)
p(y)’

where p(v) is the probability of observing the trajectory v and 41 is the conjugate (“time-reversed”) trajectory,
is identical to the exchange fluctuation theorem.
Verify that the fluctuation theorem in the form

holds.
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Solution:
Defining the trajectory v = (z;, xs) where x = (e, n) is the vector storing the outcomes of the measure-
ments of energy and particle numbers of each bath. Then, from the exchange fluctuation theorem we

have

P(Ae,An)e™? Zp 0(Ae — [ef — €]) Ze“’(” )o(Ae — [ef — €])
= Zp YNo(—Ae — [e; — ef])é(—An — [n; — ny]) = P (—A€, —An)
5
().
Then, the probability P (o) satisfies

Zp 8o — o] =Y _p(Nilo —o(y)] =D p()e " Ps[o + o(v)] = " P(—0).

= e 7(p(y) =

Exercise 4.27: Anti-symmetric functionals of stochastic trajectories

Starting from the setup of the previous exercise, Exercise 4.26, show that the change of energy Ae, or particle
number An,, of bath v, as well as any linear combination of them is a functional ¢() of the stochastic trajectory
v satisfying

¢(v") = —6(v),

namely they are anti-symmetric under time-reversal.

Solution:
We have seen in Exercise 4.26 that the stochastic trajectory is v = (x;,2¢) with « representing the
outcomes of the energy and particle measurements of each bath, namely = = (e€,n). Since v = (z £y %i),
we have

Ae(y) = ef —ei = —Ae(y"),  An(y) =n; —n; = —An(y").

Therefore, every ¢(v) = o - Ae(y) + 3 - An(y) is antisymmetric under time-reversal:

B(y) = —p(+").

Exercise 4.28: Thermodynamic uncertainty relation for current-type observables

Let ¢ be an observable anti-symmetric under time-reversal and P(o,¢) be the joint distribution of observing
the entropy production ¢ and the observable ¢, which satisfies the detailed fluctuation theorem

P(U7 (b) — ea’/kB
P(_U7 _¢) .

Analogously to Exercise 4.25, we introduce the probability distribution
Q(0,¢) = (1+¢7**)P(0,¢)  foro € [0,0q]

and denote as (---) ({---)¢) the averages with respect to P (@)). Show that

0= (o (5T )) 6=

Use Cauchy-Schwarz inequality to prove

(0)? < (#*)q <tanh2 <2;ZB) >Q

Var(¢) 2
(¢)? ST

and finally prove the inequality
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Solution:
0= %/dwza(a, ¢) = /Odo; d6{P(0, ) + P(~0, )] = /Odo; d68{P(0, ) — P(~0,~4)]
= /5105 [a60P(0,6)(1 - %) = G tanh )
@)= 55/ d¢*P(o,8) = /Odo; [166°1P(0,0) + P(=0.0)] = /575 [1651P(0,6) + P(-0.~0)
= (¢%)o

Cauchy-Schwarz says that, given a scalar product (-, -) then (u,v)? < |ul?|v|? Vu,v. Let’s denote (f, g) =
(f(¢,0)9(¢,0))q for all f,g real functions. Clearly, (-,-) is symmetric, bilinear and positive definite:
(f2(¢,0))q > 0, with equality if and only if f = 0 almost everywhere. Then, we can apply Cauchy-
Schwarz with the functions f(¢,0) = ¢ and g(¢,0) = tanh §:

(9)? = (¢ tanh 2)3 < (9*)q(tanh® Z)q = (7) (tanh’ 7).
Notice that the hyperbolic tangent tanh x is concave for > 0, which allows us to write
tanh? z = tanh z tanh z 4 (1 — tanh z) tanh(0) < tanh(z tanh )
which means that
(tanh® %>Q < (tanh (% tanh %))Q < tanh <% tanh %>Q = tanh%

where we used once more that tanh x is concave for > 0 in the last inequality. Then, we have

2 2 E Var(gi)) 1 _a— L
(P = o) el 2 = (p)? = tanh% 1= e —1°

Notably, if ¥ < 1 the thermodynamic uncertainty relation can be approximated as

Var(¢)
(¢)?

>

M e

Exercise 4.29: Thermodynamic uncertainty relation in the single-electron transis-
tor

In the context of Exercise 4.13, use the cumulant generating function in the long time limit to verify the
thermodynamic uncertainty relation with the observable ¢ corresponding to the number of electrons n flowing
from left to right at steady state.

Show that the thermodynamic uncertainty relation

Var(9) _ 2k
9?2 =%

can be expressed as
Var(I) S 2kp
rr —
where I = (n)(t)/t is the current, Var(I) = [(n?)(t) — (n)2(t)]/t is the current variance and 3 is the entropy
production rate, all evaluated at steady state.

)

Solution:

In Exercise 4.13 we calculated the eigenvalues of the rate equation with the counting fields, obtaining

)\?i =—-1£y1-F(xL — xr), Fxr—xr) = fr(1-fr) (1 - ei(XFXR)) +fr(1—fL) <1 - ei(XRf’“)) .

These eigenvaues enter the cumulant generating function C(x,t) = InTr {p(x,t)} through the time-
evolution p(x,t) = e£(X)tp(0). In particular, at large times the eigenvalue with the largest real part will
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dominate over the others, such that the scaled cumulant generating function becomes

S(x) = lim Cxt) =i

t—oo t

Then, since F(0) = 0 and
O F = —ifL(1— fr)eX +ifr(l — fr)e~™ — 0y F(0) = —i(fL — fr)

OFF = fr(1— fr)e™ + fr(l = fr)e™™ = 83F(0) = fr(1 — fr) + fr(1 - fi)

we can calculate the moments of the number of particles n leaving the left contact through the cumulant
generating function. In particular, the current is

I= lim miﬁ = —idy, S(X)|x=0

t—o0

_ir 1 _8XF(XL — XR)

2\/1-F(xL — Xr)

= g(fL — fr)

x=0

and its variance is

Var(l) = lim ‘2@

t—o0

= (=1)*0%, S(X)Ix=0 =

T (1 —ORF(xL —xr) <—6XF<XL—XR>>2>
x=0

1
2\ /T-F(xz —xr) 40 —F(—xr)*>
= g (fL(l —fr)+ frR(1 = fr) — %(fL - fR)2> :

Since we have both average current and current variance, the missing ingredient for the thermodynamic
uncertainty relation is the entropy production. Notably, since the tunneling electrons have all the same
energy €, we are in the strong coupling regime, and the entropy production can be written as

¥ = [Br(e — pr) — Br(e — pr)I.

To write the thermodynamic uncerainty relation for the current is sufficient to introduce the positive and
large time ¢ in the inequality, and use the definitions of current, current variance and entropy prodution
rate.

Then, the thermodynamic uncertainty relation becomes

fr(l = fr) + fr(1 = f1)
(fr — fr)?

2
(fo — fr)log (T_L%%R@)

1
>
52

that we verify numerically.

import numpy as np
import matplotlib.pyplot as plt
HAHHRHARHARHHRHRRH AR AR B R B R BB AR BE BB A BB B RSB RA BB R B R R BB AR RSB H R R RSB H SRR H

n = 300;

a = 0.001;

x = np.linspace(a, 1-a, n);
y = np.linspace(a, 1-a, n);
out = np.zeros([n,n]);

for i in range(n):

X = x[i]
for j in range(n):
Y = y[j]

entr = (X-Y)*np.log(X*x(1-Y)/(Y*(1-X)));
out[i, jl = ((X*(1-Y)+ Y*(1-X))-.5*x(X-Y)*%2)/(X-Y)**2 - 2/entr
if out[i, jJ]<O:

print (out [i, jl1)

X, Y = np.meshgrid(x, y)

plt.pcolormesh(X, Y, out, cmap="RdBu");

plt.colorbar ()

plt.xlabel ("$f_L$");plt.ylabel ("$£f_R$");

HUEARBHBAARBAR BB AR BB AR B R AR BB BABHBABHBARHBABRBARHBAA R B AR AR AR BB AR SR BRBHBRAHH
plt.show ()
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Figure 6: Thermodynamic uncertainty relation for the single electron transistor.

Exercise 4.30: Time-reversal anti-symmetry of stochastic work and chemical work
Show that the stochastic work introduced in the two-point measurement scheme, namely

w =€, — €
the work done being the difference in internal energy of the system, is anti-symmetric under time reversal

w(y") = —w(7).
Show that the chemical work, defined through

Wenem(t) = — Y pdi N, (t)

is also anti-symmetric under time reversal.

Solution:

In the time-reversed two-point measurement scheme the work done is w = ¢y — €, because we firs do
the measurement at time 7 and then we follow ~! to finally measure the system at ¢ = 0. Therefore,
w(y’) = ~w(y).

From integration, the chemical work reads

Wchem('r) = — Z MVAN,,(’T).

Now, the time-reversed process starts with the bats having N, (7) particles and ends with them having
N, (0) particles, therefore also the chemical work is anti-symmetric under time reversal.

Exercise 4.31: Rank inequality

Prove that
rank(psp) < rank(pg)rank(pp)

by using the Schmidt decomposition, namely that one can always write [¢)) = >, ¢; |i) 4 ® |i) 5 for some or-
thonormal set of vetors {|i) , 5} € Ha/p and some positive, real-valued coefficients c;.

Solution:
Let

pPSB = Zpa |wa><wa|

be the eigendecomposition of the joint state. Using the schmidt decomposition on each eigenvector, we
have
PSB = Zpaciacja |iaia><jaja| .

ija
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Taking the partial trace we have

ps =Trs{psp}t = ZpozciacjaTrS {liaXials}liaXialp = Zpaczza liaXialp -

ijo {1e%
This means that the support of pp is supp(pr) = Span({|ia)(ia| g }ia), Which means that
supp(ps @ pp) = Span({liajs)iasl}ijas)

while
supp(psp) = Span({|va XVal}ta) = Span({liaiaNiaial}tia)

which means that
supp(psp) C supp(ps ® pp) = supp(ps) & supp(ps)

Since the dimension of the support equals the rank, we finally have

rank(psp) < rank(pg)rank(pp).

Exercise 4.32: Local pure state = separable global state
Show that Trg {pse} = [)1|4 for some [¢) ¢ imples psg = [Y) )| ® pr for any psp.

Solution:
Let

PSE = Zpoz |7/}a><¢a|
«
be the eigendecomposition of the global state. Using the Schmidt decomposition on each eigenvector we

have
[Ya) = Zcia liada)

and the global state becomes
PSE = Zpaciacja liataXiadal -

(%%

Taking the partial trace leads to
Wi !
ps = Zpacz?a liaials = [¥X¥s -
ai

To satisfy the purity condition we need ¢;o = d;5, for one z, and |z4)g = [|¢) ¢ for all z,. Then, going
back to the Schmidt decomposed global state we find

pse =) PalVNils ® [zakzalp = [WXYls ® pE

AT

with pp =) Do |Za)®a|g. Note that since the environment vectors |z,) need not be all equal, the
environment’s local state is generally mixed.

Exercise 4.33: Impossibility of projective measurements with a mixed ancilla
Show that, for an initially mixed ancilla state, an ideal projective measurement, namely

s(x)pstls(z) _ Tra{lz)fz(, Vos @ paV'}
p(x) p(x)

ps(w) =

becomes impossible.
Show that
rank[pg|rank[p4] < rank[p’s|rank[p’,]

where pg/a (P / ) denotes the marginal state of the system/ancilla before (after) the interaction.
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Solution:
Taking a mixed p4 we find

TrA {I.’E><.’E|A VpS b2y Zpa |wa><wa|14 VT} = Z MaszMlz

with
Moy = \/Zj_a<x|vl¢a>A .

Thse operators define the POVM associated with the measurement. Now, for the measurement on S to
be projective, we need

> MpaMaops ML, M,

af
which is generally satisfied if My, Mpy = Mayda8, namely the operators {My,}o are a set of mutually
exclusive projectors. However, for this to happen one needsto have only one possible « (p, = 1) which
means that the initial ancilla state has to be pure.
Using the resut of Exercise 4.31 we have

rank[pg]rank[pa] = rank[ps @ pa] = rank[ps(0)] = rank[psa(t)] < rank[ps ® ps] = rank|[ps]rank[p)].

with
Po = Tra{laXel, Vps ® paVt} = MawpsM{,

ax

and analogously for p/,. Note that the marginal state coincide with the local state because ) |x)z|, =
Iy.
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5 Operational Quantum Stochastic Thermodynamics

Exercise 5.1: Classicality of the two-point measurement scheme

Consider the two-point measurement scheme, in which the two-point probability is
p(zr,30) = Tr {II(z,)U(T, 0)II(zx0) pII () U (7, 0)}.

Show that, independent of the initial state, it satisfies

ZP(Ion) = p(¢,, To)-

T,

Then, show that by choosing the initial state to be p = 3 1u(x0)Il(z0), it also satisfies
Zp(fm 1’0) = p(x‘ra ¢0)a
Zo

thereby completing the Kolmogorov consistency condition.

Solution:
Using the linearity of the trace we can bring the sum over z, inside. There, using the completeness of
the projector set, namely Zxr II(z,) =1 we find

Zp(x‘rv :Eo) ="Tr {U(Tv O)H(mo)pH(.’L'o)UT(T, 0)} =Tr {H(xo)p} = p(¢7—7 xO)?

Tr

where we used the cyclic property of the trace combined with the unitarity of U(r,0) [U(r,0)UT(r,0) =1]
and the projector property I1?(xq) = I(z0).

Again, we use the linearity of the trace to brin the summation inside. Now, we use the structure of the
initial state to simplify notably the equation and leaving only one projector Il(zg) since II(x)II(y) =
0y I1()

S p(ar,20) = Tt {nm)v(r, 0) (Z ﬂyﬂ(xo)ﬂ(y)ﬂ(xo)) Ui(r, o>}

oy

=Tr {H(xr)U(ﬂ 0) (Z uyH(y)> Ut(r, 0)} = Tr {II(z)U(7,0)p(0)U(,0) }

= Tr {Il(z,)p(7)} = pl@r, #)-

Zo

Exercise 5.2: Two-point measurement scheme with degeneracies

Consider an isolated system with Hamiltonian H()\;) containing degeneracies. In particular, let |e;, g:) denote
an eigenstate of H(\;) with eigenvalue ¢; and g; labels eigenvectors in the corresponding degenerate subspace.
Show that

Mrpus(w) = Z Slw — (7 — €0)]| {er, 9-|U (7, 0)[€0, 90) | l€0, go)€o, gol
€rgr,€090

is normalized and positive, and therefore constitues a POVM.
Show that Tr {Mrpms(w)p(0)} coincides with the work probability distribution from the two-point mea-
surement approach if the initial state obeys (o, go|p(0)|€0, o) ~ dgohs-

Solution:
I will drop the subscript for simplicity. By introducing the eigendecomposition of the state p =

> o Pa |a)a| we have

Tr {M(w)p} = Z 8[w — (& — €0)] {er, 9-|U(7,0) €0, 90) | {€0g0lpleogo) =

€rgr,€090

= > dw— (e —€0)lpa (e g:U(T,0) €0, 90) I*] {€ogoler) |* > 0

€rgr,€090,%
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where each term multiplying the delta distribution is non-negative. Then, integrating over w wee have

/dWTY {Mw)p} =Y | (&, 9-|U(7,0)le0, 90) I” (€ogolpleogo) =

€rgr,€090
= (€0, 90| U" (Z ler, gr) <eT,gT>> U |eo, g0) (eogolpleogo) = Y _ (€ogolpleogo) =1
€ogo €rgr €ogo

/dwTr {M(w)p} =Tr{p} Vp = dwM(w) = 1.
The probability of observing the work Ae = e, — ¢q is

P(w) = 6(w — Ae)Tr {II(e,)UTL(ep) pll(€o) U }

€Er€Q

=D 8(w—A)Tr {|erz)erz| U leoz)eoz| pleoy)eoy| U}

€rZ €0TY

= Z Z 5(w — Ae)Tr {|e,2Xerz| U |eoz)eoz| pleoxXeow| UT} = Tr {M(w)p}

€ErZ €EQT

where we used that (eoz|pleoy) ~ dzy to get rid of of the summing index y.

Exercise 5.3: Implementing a one-time measurement to reproduce the two-time
measurement

Consider the following protocol applied to the system and ancilla, the former being described by the Hamiltonian
H()\;), while the letter has negligible Hamiltonian but is described with the position and momentum operators
X, P. Consider the initial state pg ® |z = 0){z = 0|. The protocol reads as follows

1. Apply Uy = e~ tH(X0)®P/h

2. Let S evolve through H():), which generates the unitary U(7,0)
3. Apply U, = e~ tH(A-)®P/R

4. Measure |z)z|,.

Show that, for any initial state pg, the probability of obtaining outcome x = w coincides with

prevs(w) = ) 6w — (& — eo)]| (e |U (7, 0)[eo) [* {eolpsleo) -

€r,€0

Solution:
Remembering that [X, P] = ih, we notice that

XP" = (ih+ PX)P""! = ihP"~! + P(ih + PX)P"2 = 2ihP"" ! 4 P2XP"2 = nshP"" ! 4 P"X

which means that

. n pn - n . n—1 n
xeor - x Yo UL E 57 CPAP_+ P8 _ ior(x — o) = " o) = fo = ho)

n

The probability of observing the outcome z at the end of the protocol is

T {[2)a| U-UUop @ [0X0| USUTUL Y = 3™ (e,a|U-UUop @ |0XO| U U U € )

€r

The unitary Ul acts as

H(A)®P/h ler, ) = pier®P/h ler, ) = |er, T — €7 .
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Introducing the identities > _  |eo,y)€o,y| we have

=3 3 ersa — e Ul leayeoyl p ® [0X0 [e02Ke02l UUT Jerz — €)

€r €0QEQYZ

=" (er, 7 — &| Ul |eo, 0) (€olpleo) (0, 0| UUY ez, 2 — &)

€+ €0EQ

= ZZ <€T?I — E7'| U |607€0> <€0|p|€0> <€0a60| UT |€-,—,le' - €T>

€+ €0EQ

=D (erlUleo) (x — exleo) {eolpleo) (eole — €r) (ol U fer)

€r €0E&0

= Z o[z — (- — €o)]| (e-| U |eo) |2 (eolpleo) = prPms (@)

€T+ €Q

in the last step we used that | (z|y) |?> = §(x — y) to get rid of the sum over &.

Exercise 5.4: Lemma for No-Go theorem: identically 0 operator

Consider an arbitrary non-negative operator A > 0. Show that if (n|A|n) = 0 for all elements of some basis set
{|n)}, then A = 0 identically.

Solution:
Since A is non-negative, A + €l > 0, Ve > 0. Then, the bilinear product

(¢,9) = (8l A + el|y)

defines a scalar product: (¢,v) = (¢, ¢)*, (¢, ¢) > 0 with equality only for ¢ = 0. We can then use the
Cauchy-Schwarz inequality, namely

(@, 9)1* < (6, 0) (¥, %)
choosing ¢ = |n) and ¢ = |m). This leads to

| (m|A + €l|n) |2 < (m|A + el|lm) (n|A + €l|n) .

Taking € to be vanishingly small, we have

| (m|Aln) |* < (m|AJm) (n|AJn) .

Then, if (n|A|n) =0 Vn then also (m|A|n) =0 Vm,n. Therefore, A = 0.

Exercise 5.5: Zero measurement work

Consider the following implementation of an ideal projective measurement of the observable Rg = Y ' A(r)ILs(r)
based on the introduction of the auxiliary ideal memory M. Initially, the system and memory are in the state

p(SOIz/I = ps) ® |1X1],, and evolve through the unitary

Usi =Y Ts(r) @Y [r+s—1)s|y
r=1 s

withr+s—1 understood to be modulo n. After the unitary, the state is p(Sllz/[ = LISMng]Q = Ugnfpfgoj)vIU;M and

has marginal state p =3, P(r ) (r)pg))l_[g(r). After measuring the memory and obtaining outcome
r the post-selected state is
2 1 0
P = 5 Ps () @ 1)irla
and the average post-measurement state is pS =) .p(r )Ps M( ).

Neglecting the internal energy of the memory (which is ideal), the interal energy and the stochastic internal
energy of the system are

Uj =Trg {Hsp(J)}, ug(r) = Trg {ngg)(r)}.
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respectively. In particular, we split the stochastic energy as
AUQO(T) = UQ(T') — U() = AUQl(’I") + AUlo,

with AUQl(T’) = UQ(T‘) — U1 and AUlO = U1 — Uo.
Show that, if [Rg, Hs] = 0, then

AUy = Zp(r)AuQO(r) = 0.

Solution:
Noticing that if [Rg, Hg] = 0 then the two operators share eigenspaces, specifically

[H,R] =0— > [HNIL] =0 Y A\(HIL —ILH) =0— Y AILHIL, — A\J,H =0
— (A\y = A)ILHIL, =0 Va,y = [, HII, = 6,1, HII, — H = ZHwHHz

— [H,1I] = 0.

=2 pralr TW%ﬁZM (ﬁ=ms&&ZWm£}=Zﬁmpﬁm£m&
= ZTTS {HTHSpg)} = Trg {Hsp( )} =0,

which means that AUsg = 0.

Exercise 5.6: Second law for a quantum measurement

Starting from the setup of Exercise 5.5, we define the conditional entropy

s2(r) = —kplnp(r) + kBS[pg) (r)].

Show that
Sy =50 >0, Sy = p(r)sa(r)

For a measurement of a rank-1 observable, show that the second law is equivalent to
0
Ssn(p) > S[p8]

with p being the vector probability of p(r) and the equality is reached if and only if [Rg, (0)] 0.

Solution:
Since pg)( = 1 10 p(O)HT the average of so(r) reads

Sz =Y prsa(r) = ZTT {1111, (oML =gy ) = S() + 3~ 9L )

We can now use the following inequalities on convex combinations and on set of projectors p, =
PopPy/An, An = Tr {P,p}:

Slpl < S [Z )\npnl <> ASlpal + S(N)

we obtain

> S[p] = S,

(0)
w[zm ]_ [z_

T
T

which is the second law S5 — Sp > 0.

If we have a rank-1 obersable then all the projectors have rank 1 and the post-selected states P(s2) (r) also
have rank 1, i.e. they are pure states. This means that So reduces to Sy = S(p), such that the second
law becomes S(p) — Sy > 0.
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If [Rs,pg))] = 0 then the two share the same eigenspaces. In particular, they are diagonal in the

same basis. This allows us to identify the probability of observing outcome r with p,,. = (r |p(0)|r> =
(r] > ps |s)s||r) = pr. Therefore, the entropies S(p) and Sy coincide. On the other hand, generally the

probbaility of observing outcome r would be p, = > ga| (a|r) |?, with p(SO) =Y . 4a |a)al. Consider
now the relative entropy between initial and (averaged) final state

D[p?|p®] = anlnqa an (alr) *Inp, = S(p) - S(a) =0

which is zero by hypothesis. However, we know from Klein’s inequality that
Dip|o] > 0, with Dlplo]=0<p=0

therefore, the initial state and the averaged final state must coincide (up to reshuffling of the basis).

This means that P(s) and p( )

that [Rs, Ps ] = 0.

are diagonal in the same basis, which is the eigenbasis of Rg, meaning

Exercise 5.7: Entropy production in a general control operation

Consider a general control operation in which, first, the system and the ancilla (SA) are evolved through Usg 4.
Then, a projective measurement on A is implemented with an ideam memory M in such a way that AM evolves
with Uaps. Only then, the memory is observed.

Defining the stochastic entropy as

s3(r) = —kgInp(r) + kpS[pi) ()],
find an example where s3(r) — Sy < 0, with Sy being the initial entropy, for some 7, but S3 — Sy > 0.

Solution:
Consider the following averaged post-measurement state

pShas = DNl g4 ® |0X0las + (1 = P)asa ® 1)1,

that crucially yields a pure state on S A when the outcome of the measurement is 0. Indeed, the stochastic
entropy for r =0 is
s3(0) = —Inp.

Consider now the simplest possible case: Before the measurement the state is simply

2 3
P(s,zxM = P(S,ZxM

This has entropy
S2 = S(p) T (]. —p)S[O’SA] — Sl = S(),

and we can write the difference

1-—p

$3(0) = So=—lnp+plnp+ (1 — p)In(l — p) — (1 — p)S[osa]l = (1 —p) |—S[osa] +1n
Since (1 — p) > 0 we see that to have a negative stochastic entropy production we need

B_S[U](l—p) <p—p> m

Exercise 5.8: Repeated interactions in operational stochastic thermodynamics: idle
ancillae

Consider the framework of repeated interactions, where the system S interacts with a stream of auxiliary ancillae
A= A(0)A(1)--- A(n) to produce the control operations (C) between the dynamical evolutions (£) of S. This
means that the conditional non-normalized state is

ﬁs(ﬂrn) = Cn(rn‘rnfl)gn,nfl(rnfl) 0 (7”1\7”0)51,0(T())CO(T())PS(O),
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with
Cn(rn|rn71)PgO) =Trsam) {PA(n) (rn)Us a(n) (rn—1) [pA(S’O) ® pff()n)(rn,ﬂ} } '

The Hamiltonian of system and ancillae is

Hga[Ai(rn)] = Hs[Ai(rn)] + Z H )
j=0
and allows to define the stochastic internal energy as

n

usA(tn,t) = Trsa {Hsa[Ne(rn)lpsa(titn)} = us(rn, £) + Y wag)(rn,t).
=0

Show that the ancillae stochastic energy does not change in the time between two control operations.

Solution:
Between (but excluding) two consecutive control operations, t, < t,1, the system evolves according to
the dynamical map &, 41, (ry,t) such that the state is

psa(trn) = Ent1n(tn, t)psa(tnlrs)
such that the stochastic internal energy of the ancillae at time ¢ is
uA(rn,t) = Trsa {HaEnt1,n(Tn, t)psa(tnlrn)}

Crucially, Hy and &,41,(rn,t) commute because they act on different Hilbert spaces. Furthermore, in-
troducing the Kraus decomposition of the dynamical map &, 11,5 (rn, t)psa(tnlrn) =, Kipsa (tn|rn)K;r
with >, KJ K; = I Kraus operators generally depending on both ¢ and r,,, we have

wA(Enst) = Trsa {HaEn11,0(En Dpsaltalrn)} = > Trsa { HaKipsa(talra) K] |

= ZTTSA {KJKiHAPSA(tMPn)KZ} = Trsa {Hapsa(tn|tn)} = ua(ry, t))).

Exercise 5.9: Repeated interactions in operational stochastic thermodynamics:
Monty Hall style

In the framework of repeated interaction for operational stochastic thermodyncamis, introduced in Exercise 5.8,
construct an example with two ancillae A(0), A(1), where the internal energy of A(0) changes after receiving
result 7.

Show that this is not a quantum effect in general.

Solution:
Let’s assume that after the control operation with the 0-th ancilla the SA state is

00)00] + |11)11
,osA:(l X |2| X |> & 10)0Lac
SA(0)

which is classically correlated state that has internal energy of A(0) equal to /2 (taking H () = € [1)(1]
as Hamiltonian). Let’s consider the trivial dynamical map & o = I and the control-flip unitary between
S and A(1)

U]00) =[00), U |10) = |01).

Notice how also this operation is classical since it can be done with a permutation. After this unitary
evolution we have

|000)(000| + [011)011]
2
we now measure A(1) which leads to the outcomes

1000)(000| 011)(011]
2 2
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Notice that, if the outcome of the measurement is 0, then the post-selected state has internal energy of
A(0) equal to 0, whereas if the outcome is 1, the internal energy of A(0) is e.

This is basically the classical “collapse of the wave function”: once more information is gathered, we
update the state and change the probabilities accordingly, just like in the Monty Hall problem.

Exercise 5.10: Repeated interactions in operational stochastic thermodynamics:
15t law

In the framework of repeated interactions in operational stochastic thermodynamics, introduced in Exercise 5.8,
consider the change in energy due to the control operation, namely

Aucst;‘l(rn) = lir(gl+ [usa(rn,tn +€) —usa(rn, ty, —€)] = Au™(r,) + wcm(rn,l)
e—

where w*!(r,,_;) is the change in energy due to the unitary evolution Ug A(n) calculated before the projective
measurement on the ancilla, whereas Au™3(r,,) is the change in energy between before and after the ancilla’s
measurement.

In particular, we separate
Aumeas(rn) — qgleas (rn) _|_ ,w?eas (rn)

with
Q?eas(rn) = TrS {HS [/\n(rn—l)] {Pg) (rn) - pg)(rn—l)} } B 1U2eas(rn) = TI'A {HA {pf) (I‘n) — pg)(rn_l)} } s
where
(1) (0) (0) (2) 7DA(n) (Tn)p(slf)l(n)(rnA)
pSA(n)(rn—l) = uSA(n)(rn—l) [ps (rn—l) Q Pa (rn—l):| s pSA(n)(rn) = p(T |I‘ 71)

are the states immediately after the unitary evolution and the projective ([II4(n)(77), Ha(n)] = 0) measurement,
respectively.

Show that

ZP(Tn,|rn—1)Q?eaS(rn) =0, Zp(rnhn—l)wgeas(rn) =0.
Solution:

We can tackle the sums directly:

> p(ralrn_1)gie® (r) = Trs {Hs [vaurnnp?)(rn) - p<s”<rn1>] }
{rs

> Tra {Pa (rm)pSArn-1) } - p?(rn_l)] }

Tn

Trg {Hs [TTA {Pfgl);(rn—l)} — Pg)(rn—l)] } =0
> p(ralra—1)wis(rn) = Tra { Ha

=Try {HA ZTrS {PA(n) (Tn)pg,zx(rn—l)} - PS)(rn—l)] }
{

Try ¢ Ha [Trs {p,(sl%(rn—l)} — P(j)(rn—l)]} =0

S plralrn-1)p%) (rn) - pﬁ?(rnl)l }

Tn

Exercise 5.11: Repeated interactions in operational stochastic thermodynamics:
2nd aw

In the framework of repeated interactions in operational stochastic thermodynamics, introduced in Exercise 5.8,
consider the change in entropy in absence of control operations, namely in the time interval (¢,_1 + €,t, — €).
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The stochastic entropy production in such an interval is

q(n) (rn— 1 )

o) (rn-1) = ki { [l (rn-1)] = SlpEA (1)) | — T,

where p(;gl(rn,l) is the initial state obtained after the starting control operation, and S[pgojx (rp—1)] is the final
state, obtained through the dynamical map &, ,—1(r,—1) as
0 2
p,(sli(rn—l) = [gn,n—l(rn—l) ®IA]P(321(I'n—1)7
and the stochastic heat ¢(™)(r,,_;) is the one exchanged during the dynamical map with the bath, namely

¢ (k0 / dtTrs {Hs[\o(tn1))0ups (trn_1)}

771

Show that
U(n) (I‘n_l) Z 0

Solution:
First of all, we would like to separate the entropies on the joint states pga into the entropies of the
marginal states, therefore we make use of the mutual information

Is:alpsal = Slps] + Slpal = Slpsal

which allows us to write

™ (r,,_
o™ (r,_1) = kg {ASS +ASy + IS:A[pE;'zA(I'n—l)] = IS:A[PQA(Pn—l)]} = %

Crucially, the marginal state of the ancilla does not change. In fact, by introducing the Kraus decom-
position K; of the dynamical map &, ,—1 we have

Tra {XAPQ)} =Trsa {XA[5 ®IA]P§;22;} = ZTI'SA {XAKiP,(S'Q,zszT} ZTYSA {K K; XAP(2 }

:TrsA{XApgA}:TrA{XApf)} VXa = pff‘))—pil).

This means that AS4 = S[pff)] - S[p(Az)] = 0.
Additionally, we can apply the second law to the system-bath exchange, see Exercise 3.10: Calling
¥ = ASg — £ we have

Tr {Hs(\)Oips} 9

0% = —Tr{Oipsnps} — T =~ 57|, Dleslz(x)]
At

Using that the thermal state is a fixed point of the dynamics (for sufficienly small times such that the
driving protocol does not matter), £(dt)m(A:) = m(\:) and the monotonicity of the relative entropy,
namely D[Ep|Ea] < D[p|o] we find

Dlps(t)|m(A)] — DIE(dt t)|E(dt)m (A
o5 = 1im DsOIr()] = DIE@psOIE@T(A] _ o
dt—0 dt
which also imples ¥ > 0. Then, the stochastic entropy production satisfies

o (r-1) 2 kg {Isal0§A (rn-1)] — Is:alp§ (rn-1)] }
Finally, noticing that the mutual information can be written in terms of a relative entropy as

Is.alpsa]l = Slps] + S[pa] — S[psal = Dlpsalps ® pa]

the lower bound of the stochastic entropy production reads

0) (0
ks { DIpGAIE ® o] - DIsEAINE” © A1}
Since we already discussed how p(2) = pf) we can write this difference of relative entropies as

ks { DpEAIPE @ pA] — DIE @ Ta)pGAI(E 2 Ta)pl) @ p3} > 0

which is positive by virtue of the relative entropy monotonicity. This means that the stochastic entropy
production without control operations is positive:

U(n) (rn—l) > 0.

112



Exercise 5.12: Repeated interactions in operational stochastic thermodynamics:
no measurements

Verify that the framework of repeated interactions in operational stochastic thermodynamics, introduced in
Exercise 5.8 satisfies the following statements:

(i) If one does not perform any ancilla measurement, it reduces to the repeated interaction framework.

(ii) If one does not perform any control operations, it reduces to the standard quantum thermodynamics
framework based on the Born-Markov-secular equation.

Solution:

(i) If one does not perform any ancilla measurement, namely P4,y = Za,, the map of the joint
system-+ancillae state after n interactions reads

p(t) = Enlhsarny - - Usa)€1,00(0).

As expected, we notice that heat and work associated with the measurement vanish (see Exercise
5.10) because pga = pgli. This means that the energy difference in the control operation is all

work:
Audy = werl(t).

ii one does not perform any control operations, we can set all unitaries Uss = Zga as well, so the
i) If d t perfa y control operations, t all unitaries U T 11, so th
state evolution simply becomes

P(t) = 5t,0ﬂ(0)

which is the formalism of the BMS master equation, in which & o = Telo L(s)ds,

Exercise 5.13: Stochastic entropy production with continuous measurements

Consider the framework of repeated interactions in operational stochastic thermodynamics, introduced in Exer-
cise 5.8, in which the measurements happen very frequently (at each time step 6t), such that one can approximate

the dynamical maps as
E(t+ dt,t) = Tg + dtL( ),

which we take to be independent of the previous measurement results. Furthermore, we consider the classical case
in which the system Hamiltonians at different times commute, such that we can write the eigendecomposition
Hg(M\) = >, e(r,A\)|r)r|, and the measurement is done on the energy eigenbasis, such that the control
operation reads

Co(rn)ps) (En1) = )l p&) (tnr) 1)l

From the definition of stochastic entropy production in the repeated interactions in operational stochazstic

thermodynamics,
O_(n] (rn) _ U(n)(rn—l) + o_ctrl(rn)

where )
n n rni . . meas rn
o) (1) = As§ray) — T0), o) = As () — B,
show that
As8(rn) = —kpIn(ralra_1) = —kpInp(sy|sn_1).
Solution:
The heat exchanged during the dynamical map is
not not
¢™(rp_1) = (dtT)r {Hs(M\t)Oeps(t)} =~ (dtT;r {Hs(M\)L(Ai—st)ps(t — 0t)} ~ 6tTr {Hs(An)L(An—1)ps(tn-1)}
n—1)dt n—1)dt
Notice that, since pg(t,—1) is the state right after the measurement, we have ps(t,—1) = |[rn_1Xrn—1]-
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Instead, the heat exchanged during the measurement is

qgleas(rn) — Ty {HS()\H) (‘Tn><rn| — [IS I 5tﬁ()\n_1)} |7"n—1><7nn—1|)}
= €(rn, At) — €(rn—1, A¢) — 0tTr {Hg(An)L(An—1) [Tn—1)Xrn-1} -

Noticing that

As§)(tn_1) = S[pSA(tn)] — SIPGA(ta1)], AsTH(rn) = —Inp(ralrn_1) + S[pGA(ta)] — SlpSA ()],

using that the control operation is implemented through a unitary transformation, and therefore does
not change the entropy, their sum yields

AT (tno1) + AsEi () = —Inp(ralra—1) + S[oGA (tn)] — S[pSA (tn—1)]-

Crucially, pg) (tn) = |ra)Xra| = p(2) (tn) = |rn)rnlg ® pa(ts). Furthermore, if we consider the imple-
mentation of the control operation C, (r,) to be done through a projective measurement on the ancilla,
also pa(ty) will be pure. This means that S [p(szjx( tn)] =S [p@x( 1)] = 0 and we can write the entropy
production as
€(rn, At) — €(rn—1, At)

T .

o = —Inp(ry|rp—1) —

Here, the conditional probability p(r,|r,—1) is given by the norm of C, (r,) pgo)(rn_l). In particular, we
find that

P(raltn—1) = (ralpS) (Ca—1)rn) = (al [raz1 Xrn—1] + L) Fa—1 Xra—1]]l7a)

depends only on the current outcome r,, and the immediately preceding outcome 7,1, meaning that
the probability distribution satisfies the Markov property

p(rn‘rn—l) = p(rn|rn—1)~

Then, the average entropy production in one time interval §t reads

(n]
a5 = 3 plra-)Sp(ralrn-1)] - T2

Tn—1

Exercise 5.14: Faulty Maxwell’s demon

In the framework of repeated interaction for operational stochastic thermodynamics, consider the case in which
the ancillae are used to implement the arbitrary channels Cg(rg|rix—1) on the system S through projective,
rank-1 measurements PA(,L)(rn) on the ancillae, which act as a memory.

Furthermore, assume the ancillae to be energy-degenerate. However, unlike an ideal memory, consider the
case in which the initial ancilla state is mixed and show that the amount of extractable work is reduced.

Solution:
We can write the initial state as

psa(0 ® P (0

where all p, are arbitrary.
The final state, i.e. the state after n measurements, is

n
psa(titn) = ps(tlrn) &) IriXril ac
i=0
because all the measurements on the ancillae collapse their state into a pure state.
Notice that the ancillae encode the outcomes of the measurements, and therefore there is an entropy
associated with this information storage.
In particular, the final stochastic entropy reads

SSA(rna t) = = lnp(rn) + S[ps(t|rn)}
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while the initial entropy is
n

s54(0) = S[ps(0)] + Y _ Slpac) (0))-

i=0
Thus, the average second law becomes
5(t) = Slp(ra)] + Zp(rn)S[ps(ﬂrn)]] — S[ps(0)] — ZS[PA(z‘) (0)] — @ >0
In i=0

If the final S state coincides with the initial one, the entropy difference in average second law cancels
out, as well as the internal energy difference in the first law, which then becomes

AUs(t) = 0= W(t) + Q(¢)
allowing us to write

T (5[p(fn)] - Z 5[,0,4@)(0)]) > —W(t).

This shows that the maximum extracted work is reduced by the amount of work needed to reset the
memory. Notice that one could also have assumed the ancillae to be entangled, leading to the ancillae
state p4(0), without changing the the result:

T (Slp(rn)] = S[pa(0)]) = =W(#).

Notably, if the state p4(0) is pure, then we recover the ideal memory case. In fact, if the ancillae state
is pure, one can implement a unitary transformation on the ancillae to map the initial pure state into
the desired “zero” state of the memory without requiring any cost (unitaries do not change entropy and
it does not change the energy of the degenerate memory).

Exercise 5.15: Demon in the single-electron transistor:
Consider the single-electron transistor introduced in Exercise 3.33, described by the classical rate equation
d pF(t)> (‘[1 = fuleo)]  fuleo) > <pF(t)>
— = r, .
it (rets 20O 1 ) ulen)) Wt
Set ur, = €9+ eV/2, ur = €9 — €V/2 with eV > 0, such that electrons would have the tendency to travel from
left to right, and define o = feV/2.s
Consider the possibility of changing the tunnelling constants I',, between the values 0,y > 0 instantaneously.

At time ¢t = 0, take the dot to be filled and the rates to be (I'r,I'r) = (I'0,0) and consider the following
feedback loop:

(1) Wait for time 7.
(2) Measure the occupation r of the dot:

— If r = 0: set the tunneling constants to (I'z,,T'r) = (0,T);
— If r = 1: set the tunneling constants to (I'z,,T'g) = (T'o,0);

(3) Go to step (1).

Show that, for any finite « and sufficiently large n, this control protocol transports electrons from the right to
the left against the voltage bias.

Solution:
Notice that, right after the measurement and feedback, the dot is either:

e Filled and connected only to the left bath.
e Empty and connected only to the right bath.

Therefore, as long as the electron can tunnel from the dot to the left bath, and electrons can tunnel from
the right bath to the dot, we will have particle transfer from right to left. This condition can be stated
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as
1—fo#0  fr#0

which in this case, since fr = =1 — fr means that a # oo.

1
1+e—«

Exercise 5.16: Demon in the single-electron transistor: electron jumps

Consider the setting of the feedback control on the single-electron transistor introduced in Exercise 5.15. Find
a relation between the measurement outcomes r;,, and the number of electrons transfered from right to left.

Solution:

The measurement outcomes is a boolean vector starting with 1 (assuming that a measurement also
happened at t = 0), e.g

rp = (1’1,1707070a0,0707071a070707171a171717"‘)'

Crucially, when the outcomes switch from 1 — 0 it means that an electron tunneled from the dot into
the left bath, whereas when the outcomes switch from 0 — 1 it means that an electron tunneled from
the right bath into the dot. Therefore, the total number of switches s gives the number of net electron
jumps (i.e. electron jumps that are actually detected by the measurement scheme). Furthermore,
since the values can only switch from 0 — 1 or from 1 — 0 and the system starts with ro = 1, we
have that s(1 — 0) — s(0 — 1) € {0,1}: is s is even, then s(1 — 0) = s(0 — 1), if s is odd then
s(1—0)=s(0—1)+1.

Exercise 5.17: Demon in the single-electron transistor: entropy

Consider the setting of the feedback control on the single-electron transistor introduced in Exercise 5.15, but
now assume that the waiting time 7 is much larger than 1/, such that we can approximate the dot state at
the measurement times nr with the corresponding steady state.

Show that
S[p(rn)] = nSSh(ﬂ-OlLa 7TI|L)7
where mg |, =1 —my, = ﬁ
Solution:
Given the symmetric choice of voltage bias, we have
1
=—=1- fg.
Ji 1+e @ Ir

Additionally, if the dot is in contact with the left bath, the next measurement will give as outcomes
e r = 1 with probability fr;
e r = 0 with probability 1 — fr.
Instead, if the dot is in contact with the right bath, the next measurement will give as outcomes
e r = 1 with probability fr =1 — fr;
e r = 0 with probability 1 — fr = fr.

Now, consider a sequence of outcomes r,, (n > 1) and let’s also write the vector v with components
chosen between L, R that indicate what probability distribution is used to determine the outcome of the
measurement. Notice that we have the 4 possibilities for the pair (r;,v;), which lead to the probabilities
of observing r;

(1,L) — fL7 <O,L) — fR, (1,R) — fR, (0,R> — fL

we can now write the two vectors and the corresponding probabilities in a “stack”, for example

i1 1 0 0 1 1 1 0 1 1
L L L R R L L L R L

fo fo fr fr fr fo fo fr frR fL
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where we can notice how v lags one step behind r,,. This makes it so that the number of fr appeating
is equal to the number of switches s. In fact, one can see the number of switches as the logical operation
r,, VT, where T, is the boolean vector with coordinates 7y = 1,7; = r;_; for i = 2,--- ,n. This logical
operation is exactly what we are doing here with the stacking of r,, and v,,.

Therefore, the probability of seeing a precise sequence with s switches is

p(rn) = f1°fR

Notice that this is actually independent of the specific sequence r,, but only depends on the number of
switches s. We can therefore look at the number of sequences r,, with s switches. Crucially, a switch
cannot be in any position: in fact, we require switches to be separated by at least one digit, i.e. there
cannot be more than one swith in a single position, and we cannot end with a switch. Introducing the

generalized switch-outcome sequence with elements from the set {ry,--- ,7,,$1,+, s} we construct all
possible sequences by looking at the composites x; = s;r;, which allows us to satisfy both conditions.
Then, we need all possible sequences from the set {x1,- - ,%s, 7511, - ,7,} which are given by the

binomial coefficient because we can shuffle the indeces of both x and r without changing the
outcome.

We can now calculate the entropy of the probability distribution p(r,,):

n!
(n—s)!s!

== ¥ sl nn(a) ==X ot i (= s) I fu + sln ).

5 rp€S;s
Using that
z”l: P k k _ z”l: 1)' xn—l—(k—l)yk—l _ ny(w + y)n—l
k:O 'k' — [n—1-— k—l)]!(k—l)!

using fr, =1 — fr, we find
S(p(rn)) =nS(fr,1 - fr).

Exercise 5.18: Implementing arbitary unitaries

Consider the system-ancilla interaction

Vsa(Ae) ZVSA(J) (M), Vsag)y(A\) = ihé(t — ;) In(Usa(y))-

Show that Vg a(;)(A¢) is Hermitian and verify that it implements the desired unitary operator Ug ;) at time ;.
I think there is an error in the book concerning the definition of Vg 4(;). Here I changed it to something that
makes more sense to me: I moved the imaginary unit ¢ outside the log.

7

Solution:
Any unitary operator U can be written in terms of an Hermitian operator K as

U=e¥
Then, the interaction with the j-th ancilla reads
Vsag)(Ae) = ih6(t — ;) In(e™) = —hK§(t — t;) = —hK18(t — t;) = Vi 4 1 (M)

The unitary induced by the interaction is

O e [_3 / Vs, (/\t)} — o ]

because the § distribution selects only one time, thereby making the time-ordered exponential rather
simple.
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Exercise 5.19: Implementing arbitrary control operations

Conside the ancilla-memory interaction

Hanr(A) =D Vaguy o)y Vagyn) () = ihd(¢ — ) n(Uagyn)
J

with t+ = t; + € immediately after t;. After tracing out the memory, the action of Vy(;yas(;)(Ae) implements
the CPTP map » . PA(])(TJ) describing the average effect of the measurement on the ancilla.

Same comment as the previous Exercise: I changed the definition of the interaction Hamiltonian moving the
imaginary unit ¢ outside the log.

Show that this description, combined with the one discussed in Exercise 5.18 implements a set of control
operations C;j = >, Cj(r;) at times ;.

Solution:
We have seen in Exercise 5.18 that the interaction Hamiltonian of the given structure generates the
desired unitary transformation. Now, we can look at the marginal of S after this last CPTP map:

P =Tran {HAM,O(SAM} ZTI"A {PA g)(TJ)PSA} ZTI‘A {PA(J (rs USAPSA} ZC ;)P

Exercise 5.20: Implementing feedback control

Consider a system S coupled to a bath B, and an ancilla A. Furthermore, the ancilla is coupled to a preparation
apparatus P, which is used to set the initial ancilla state, and a memory M. The interactions between S and A,
and A and M were studied in Exercise 5.18 and Exercise 5.19. Here, we consider a quickly dephasing memory
M, such that its state is

= p(ra,t) [ea)raly Vi,

rn

and introduce feedback control by considering the Hamiltonian

Hsppam(At) Z Hsppa[Mi(rn)] @ [rn)Xrnly, + Han(Ne)-
Show that the unitary time evolution afZer the n-th control operation at t,, is
psBpAM(t) = Z Usppa(tn)psppa(tn|tn)Ulppa(tn) @ [tn)raly |
where n o
Usppam(t) =T exp {;L /tn HsppalXs(ry)lds| .

Solution:
The generic global state can be written as

psppam(t) = Z PsBPA(trn) ® |t )Xrn|y,

Tn

So, the evolution from time ¢,, to time ¢ is given by the unitary evolution

psppam(t) =Upsppan(ty).

Crucially, as seen in Exercise 5.19, the ancilla-memory interaction H 4y () only acts at t = ¢, +¢, ¢ — 0
to implement a control operation. Therefore, in the time interval (¢,,t), Hap = 0. Then, the evolution
is fully determined by Hgppa[A:(ry)] ® [rn)ryl,,. Crucially, these components commute thanks to the
projectors on the memory Hilbert space, and allow us to write

,OSBPAM(t) = Zurn (t, tn)ﬁSBPA (tn|rn) &® |rn><rn|M = Z Urn (ta tn)ﬁSBPA(tn|rn) ® |rn><rn|M U;Fn (t7 tn)

with o
Uy, (t,t,) =T exp [—% /dSHSBPA[)\S(I‘n)]dS:| .

tn
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Exercise 5.21: From autonomous process tensor to quantum Markov process with
feedback

Starting from the setup of Exercise 5.20, show that
p(tlrn) = Trppa {(rolpsppan (t)|rn)} = F[Cho(ry)]

reduces to
ﬁ(ﬂr'n) - Cn(rn|rn—1)5n,n—1(rn—l) e Cl (Tl|TO)51,O(TO)CO(TO)pS(O)

if the dynamics is Markovian and we consider only classical feedback control, i. e. conditional on the measurement
results r,,.
Verify that is equivalent to the general strategy to generate the process tensor T[C.o(ry)].

Solution:
Using the decomposition on the memory eigenstates discussed in Exercise 5.20, we have

ps(tlrn) = Trppa {(tulpspram()|rn)} = Trppa {Us, (t, ta)psppaltalrs) Ul (t,t,)}

Here, we make use of the Markovian property of the dynamics, which allows us to split the total evolution
into different segments. Indeed, a quantum dynamics &, ¢, is Markovian if &, , &, ;, Va. In particular,
here we use it to split the total channel &; o into the dynamical evolutions &, _, :, and the control
operations C. Then, using the the feedback operations implemented through the maps £ are conditional
on r, we find

ps(t|rn) = Trepa {<rn|PSBPAM(t)|rn>} =&, (rn)ps(tnlrn) = Eit, (rn)C(rnlrn—1)ps(tn|rn_1)
which leads to

ﬁ(tn‘rn) = Cn(rn|rn—1)gn,n—1(rn—1) tt Cl (7’1 |r0)81,0 (TO)CO(TO)PS(0)~

Notice that by implementing all control and feedback operations with unitaries by means of the unitary
dilation map. This means that we are starting from a larger Hilbert space, made of the system of
interested S, a bath B, and ancillae PAM, and then focus on S by taking the partial trace. Notably,
by grouping together BPA, we can sketch the implementation of the process tensor as

S Bt ps(trn)
U U

BPA I (1]

U U

M | <

which is the most general way to implement a process tensor.

Exercise 5.22: Hamiltonian of mean force of tripartite system

Consider a tripartite system XY B with Hamiltonian Hx + Hy + Hg + Vxp.

Show that the Hamiltonian of mean force H%y for XY can be written as HY + Hy.

Consider the case S” = SAM, with S coupled to a bath B, and the ideal memory with Hj; negligible weakly
coupled to a bath B’. Deduce

Hg (M) = Z{Hg[)‘t(rn)] + Ha(rn)} @ o Xrnl

rn

Solution:
The Hamiltonian of mean force of a system S in contact with a bath B is defined through

e—BH3

* )
ZS

7T§ = TI‘B {T(SB} =
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and when applied to the considered tripartite system we find
Txy = Tymxy = Hyy = Hx + Hy,

by using mxyp = e_ﬁHXYB/ZXYB = e_ﬁHye_BHXB/(ZyZXB).

In the system-ancilla-memory case we can split X = S, Y = AM because only the system S is (possibly)
strongly coupled to the bath B. Furthermore, the SAM Hamiltonian implements feedback controls, as
discussed in Exercise 5.20, so we can write the Hamiltonian of mean force as

Hian = Y (H5Do(rn)] + Halhu(®a)]) © [£n)rnly

rn

which holds during the dynamical evolutions of the system. During the control operations the Hamilto-
nian must also include the ancilla-memory interaction.

Exercise 5.23: Entropy production in strongly coupled tripartite system

Consider the supersystem S’ = SAM coupled to the baths B (strongly) and B’ (weakly) such that the initial
state is
pspamp = TsB @ pa(0) @ prr(0) @ g
with p4/a(0) pure and 7gp,ps thermal states at temperature 7'.
Using the Hamiltonian of mean force, one can define the strong coupling internal energy and entropy on S’
as

Us (t) = Trs {ps/(t) (Hg: (M) + BOsHg (M) }
ng/ (t) = Trg {pS/ (t) (— In pg: (t) + ﬁzagng(At))}
one can write the first and second laws of thermodynamics as

Q" (1)
T )

AULE) = Q (1) + W (L), % =ASL(t) —

where the work is the one done in the global unitary transformation.
Show that the strong coupling entropy production can also be written as

Y = Dlpsipp (t)|1s' (M) @ mp/] — Dipg/ (t)|mg (Ae)]

and use it to prove that X* > 0.

Solution:

This is analogous to Exercise 3.20, but let’s do the derivation anyway.

First, remember that the Hamiltonian of mean force is defined through the relations
6_/8H;~/

Z3,

Zr = Zs'BB’
P S/ = Z .
BB/

W;, = TI‘BB/ {WS’BB’} =

In this case the baths are not coupled together, so Zgp = ZgZp/. Additionally, we remind here that
the total work is

W(t) = Tr {Hs'sp/(\)psBa (1) — Hs pp' (Mo)ps s (0)}
and that the equilibrium free energy is F = —T'In Z = U/ — T'S, while the nonequilibrium free energy is
F=U-TS.
Now, we procede working on the difference between the relative entropies. In the following I will specify
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the time dependence only for t = 0, and will use the notation Xg.gg = X.

Dlp|rs'p ® mp/] — Dlps/|7&] = =S[p] + Tr {pBH} + In Z + S[ps/| — Tr {ps/BHE } — In Z%,

=S[p(0)] + In(Z52p) + Slps| + fTx {pH} — BTr {ps Hg: }

= —=S[p(0)] +In Zp + Spr — BUp' + Slps'] + BT {pH} — BTr {ps Hg }

= —Ss5(0) +In Z — fUp + S[ps'] + BTr {pH} — BTr {ps Hg }

= B[Fsp(0) —Usp(0)] + In 2 — BUp + Slps'] + BTr {pH} — BTr {ps' Hg }
(0)

= BFs'5(0) +1InZp + S[ps/] + BW — BTr {ps HE }
= BF5(0) + B[AUs — Q"] — BFg
= ASg — BQ"

Now, using the monotonicity of the relative entropy under partial trace, namely D([pag|oap] > D[pa|o 4]
we have

Dlplrs/pp] = D[Tr {BB'} p|Trpp: {5 pp'}] = Dlps:|ms/]
which proves ¥* > 0.

Exercise 5.24: Average system energy conservation in control operations

Consider the system-bath-ancilla-memory supersystem introduced in Exercise 5.20.
Show that

D2 T {Hs () [p(ra 16 (telra) = w0 )0 ()| } = 0

ro, k=0

Solution:
Remembering that p® (t;) = Uawyarr)p ™ (tx) and that

psam = ) Bsa(tlrn) ® [ra)ralp

with p(ry,t) = Tr {psa(t|r,)} we can sum over all outcomes r,, first, obtaining

Z Trsam {HSO\k) [UA(k)M(k)pg,le (te) — P(slf);M(tk)] }
k=0

focusing on only one element in the sum, we can use the cyclic property of the trace combined with the
unitarity of U4 )ar(k), and the fact that [Hs(Ax), Uak)ar(k)] = 0 as they act on different Hilbert spaces
to get

Tr {Hs [Uamp —pl} = Tr {Hs (UAMp(l)ULM - P)} =0

which imples the desired equality.

Exercise 5.25: Ramsey interferometry

Consider an atom interacting with three cavities, Ry, C, and Rs before reaching the detector D, according to
the following steps:

(1) In the first Ramsey cavity Rp, a m/2 microwave pulse is implemented, which induces the transformations
lg) — |+) and |e) — — |=), with |£) = (|g) £ |e¢))//2, on the atom.

(2) Afterwards, if the cavity C is in a Fock state with n photons, the dispersive interaction with the atom
implements the phase-shift |e) — e~?®0" |e) with ®y the phase shift per photon. Importantly, only the
excited state experiences a phase shift.

(3) Finally, the atom interacts with the second Ramsey cavity Ro, which implements a phase-shifted /2
pulse such that _
lg) + €' le)

lg) — T,

—e~"" |g) +e)

7 ;

le) =
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with ¢, adjustable phase of the Ramsey interferometer.

(4) In the end, the arom is detected in D by ionization to an electric field. Since the gound and excited
states of the atom have different ionazation energies, the detection of a resulting electron implements a
projective measurement in the basis {|g), |e)}.

Provided that the atoms are prepared in the ground state, show that the probability of detecting the atom
in |g) or |e) is
1 1
ps(g|n) = 5 [1 - COS((I)Un + (;Sr)] ) ps(e|n) = 5 [

which depends on the number of photons n

1+ cos(Pon + ¢.)],

Solution:

Let’s follow the state of the atom:
After (0) |g)

After (1) |+) = %

77L<I>0n|8>

2
After (3) 5 (lg) + €' |e) + e~ [—e™ |g) + |e)]) = 5 ([1 —e™"®"*r] |g) + [ +e7*%"] |e))

After (2) lg)+e

Then, we can calculate the probability of being in the gorund state

1 3 3 1
pe(glmn) = | {Olis) 2 = 3 |1 = e=0m =5 [* = ~[1 — cos(®on + ¢,)] = 1 = pi(eln).

Exercise 5.26: Controlled evolution of uncorrelated cavity

Consider the setting of Exercise 3.30, where a cavity evolving according to the Born-Markov secular master
equation interacts with a stream of atoms. Assuming that the time 7 between two consecutive atoms is much
smaller than the cavity relaxation time 7., i. e. T < 7, the free dynamics of the cavity can be approximated as

Entin = €T T+ Lo,

and assuming that the interaction time t;,; between cavity and atom is also much smaller than 7, i.e. t—int < 7,
we can approximate the interaction with an instantaneous unitary.

Consider the case in which, after having interacted with the cavity, the atoms are measured in a Ramsey in-
terferometer, as described in Exercise 5.25. Furthermore, assume that initially the cavity contains no coherences
in the Fock basis, such that its state can be described by the classical vector P(0) containing the probabilities
P, (0) of having n photons inside the cavity.

Using the evolution matrix Ey,,, = (n|Z + Lo7|m) and the measurement matrix My, (1) = dnmps(rin),
derive R

P(ty|rn) = M(rp)E - M(r1)EM (ro)P(0).

Solution:

When an atom passes through the cavity and its state is measured, the outcomes » = 0,1 happen with
probability ps(r|n), where n is the number of photons in the cavity. Since the cavity starts diagonal in
the Fock basis, and both measurements and dynamical evolution do not introduce coherences, p;(r|n) is
well defined and the measurement outcome induces an update on the cavity state:

P! =p,(rln)P,

where P! is the non-normalized state immediately after the measurement. This can also be written with
the matrix My, (1) = pmps(rim) as P’ = MP. Then, the cavity evolves through the Lindbladian Lo
according to the channel Z + Ly7. Since we are restricted to the diagonal elements, we use the matrix
FErm to write the dynamical evolution as

P'=EP'.
Chaining these two processes over and over we obtain the non-normalized probability vector conditioned
on n previous measurement outcomes:

P(tn|rn) = M(rp)E - - M(r1)EM (ro)P(0),

as desired.
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Exercise 5.27: Conditional atom-cavity probability

Using the Jaynes-Cummings Haimltonian, see Exercise 3.1, to describe the atom-cavity interaction of the setup
introduced in Exercise 5.26, calculate the conditional probability p(r, n|r’,n’) of detecting the atom state r and
n photons in the cavity given that the arom was prepared in v’ and the cavity had n’ photons.

For the emitter case, 7’ = e, consider the interaction time t. = 7/(2¢g /nr) , and show that the conditional

probability is

TVn+r n ™

5"
2 /n
For the absorber case, v’ = a, consider the interaction time ta = 7r/(29\/nT + 1), and show that the

conditional probability is

vn+r ™

r,n|n) = 8ppp s cos> Eni—l——r .
pa( | ) n+r,n B \/m

pe(r,n|n’) = 8 yr—14 sin (

Solution:
From Exercise 3.1 we know that the unitary evolution associated with the Jaynes-Cummings Hamiltonian
can be written as

00) = cos(tg/ T+ 1) el + costaV M) Lol i (Tl + o HENZLED e ).

with N = aa being the photon number operator of the cavity.
Now, suppose that the cavity is initially in the Fock state with m photons. Remembering that a|m) =
vm|m —1),af jm) = /m +1|m + 1) we can write

U(t) [m) = cos(tgv/m + 1) [e)e| ® [m) + cos(tgv/m) |g)g| © [m) +

— i (sin(tgv/m) le)gl ® [m — 1) + sin(tgv/m + 1) [g)e| ® |m + 1)) .

In the first line we have the phase shift similar to what happens in the Ramsey interferometer, see
Exercise 5.25, whereas in the second line the terms describe the absorption or emission of a photon by
the atom.

Now, let also suppose that the atom is initially in the excited state |e). This corresponds to the emitter
case, so let the interaction time be t. = 7/(2g,/nr). Then, the evolved atom-cavity state is

7r\/m+1 7r\/m+
le,m) — isin
2 \/nr 2 /T
From this we can calculate the probability of observing the state |r,n) using the Born rule
| (r,n|U(t)|e,m) |:

00) e m) = cos 5 Y lgm+ ).

ol i) = <g%) . plg,m+1) =sin® (;T V:/”?)

with p(r,n) = 0 if n # m, m + 1. This can be written in a compact form as

Vm 1
pe(r,n|m) = 8nqr_1,m sin’ <7T mil, zr) .

2 Jar | 2

Similarly, let’s look at the case in which the atom is initially in the ground state |g). This corresponds
to the absorber case, so let the interaction time be t, = 7/(2gv/nr + 1). Then, the evolved atom-cavity

state is
~ ™ m .. ™ m
Ut oy (LA _ T_ym 1
(0)lgv1m) = cos (5 0 gom) = i (520 Y feom = 1),

which leads to the probabilities
o [T Vm .o [T m
= R —— _— 1 pr— —_——
placm) = cost (320, plesm— 1) =sin? (32
and p(r,n) =0 if n # m, m — 1. As for the previous case, we write these in the compact form

A/ 7 >
5n r,Mm 2
p (7 Tl|m) -+ COS < \/—
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A Concepts from Information Theory

Exercise A.1: Positivity of the total information

The total information is defined as

N
Lot (p1..v) = Y Sloil = Slp1...wv]-

i=1
Show that

Lot (p1..8) = D(p1..N|p1 ® - - @ pN)
=lo+Tligza+--+L.N—1:N

where Ix.y denotes the mutual information between X and Y.

Solution:
Dropping the subscript 1--- N, we write explicitely the relative entropy

D(plpr ®--- ® pn) = =S[pl + Slpal + - - - + Slpn] = Lot (p) 2 0.
Additionally, we notice that the sum of mutual informations contains terms that cancel out:

Lo + Lia:is = S(p1) + S(p2) — S(p12) + S(p12) + S(p3) — S(p123) = S(p1) + S(p2) + S(p3) — S(p123),

and so on, which proves the last equality.

Exercise A.2: Projective measurements increase the average post-measurement

entropy

Show that projective measurements increase the von Neumann entropy of the average post-measurement state.

Solution:
We can derive this from the monotonicity of the relative entropy: Consider a POVM {P,} such that
>on P? =1, and let the “dephasing” operation be

Dpp =Y PupPa.

Notice that Dpl = I. Then, the relative entropy between a state p and the completely mized state is
D(pl1/d) = —S[p] +nd > D(Dppll/d) = —S[Dpp] + Ind.

From which we conclude that
S[Dppl = Sp].

Exercise A.3: Monotonicity of the relative entropy

Consider two arbitrary bipartite states pap and 04p and show that
D(Cp|Co) < D(plo) VC,p,o = D(paloa) < D(paploan)
Then, prove the other direction:

D(paloa) < D(pasloas) = D(Cp|Co) < D(plo)V C,p,o0.

Solution:

(=) Consider the channel C : Ha ® Hp — Ha acting as Cpap = Trp {pap}. This is a valid channel,
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B Superoperators

Exercise B.1: Frobenius scalar product

Consider the vectorization
p < |p)) :ZPMW mek ® [1)" ZPMVG
Kl

Show that the Frobenius scalar product (plo) = Tr{pio} is equal to the scalar product of the vectorized
matrices, namely
(plo) = ((plo)) -
Introducing the vector |I)) = >, |k) ®|k)", show that |I)) is the vectorization if the identity matrix /. Show
also that the trace can be written in superoperator space as ((I|A)) = Tr {A} for any arbitrary matrix A.

Solution:
Starting from the scalar product of the vectorized states we have

{(pla)) Zpklakl ijko'kl = Z(pfa)” =Tr {PTU} = (plo)
Kl l

which proves the correspondence with the Frobenius scalar product.
Writing the identity as a vector we have

I=7 duwlk)il = k)Xl = kk)
Ik k k
and the scalar product with the vectorization of any A is

((I|AY) ZAkk =Tr{A}.

Exercise B.2: Matrix representation of unitary evolution

Consider the superoperator emerging from the time evolution of an isolated system, Up = UpUT for some
unitary U. The matrix representation of U/ is given by U = U ® U™.
Show that I/ is unitary: u-ut=ut-u= I where Z =1 ® 1 is the identity matrix in superoperator space.
On the other hand, the map Up = UpUT is completely positive. Show that this does not imply that the
matrix ¢ is positive.

Solution:
The matrix representation is indeed unitary:

U-ut=UeunUteu?) =UU @ UUH* =

To show that is not necessarily positive, it is sufficient to provide an example: Let

-0 3). #= 6 2)

Notice that we choose a matrix  which is not a quantum state. Then, the scalar product
. 0 —1\?
((x|U|z)) = Tr {CL‘TUZEUT} =Tr {UzUzx} =Tr { (1 0 ) } =Tr{-I} = -2

which means that the matrix ¢/ is not positive.

Exercise B.3: Properties of the Choi matrix

Show that, if A is trace-preserving, the trace of the Choi matrix, A = > AU @ i)l is Tr {/1} =

where d = dim H;.
Show that the Choi matrix of a unitary time evolution map Up = UpU" is no longer unitary.
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Solution:
The trace of the Choi matrix is

T { A} = 3 (KA @ i1 14) = 3 (LAQiX - YT 1Al

ijkl ki

where in the last step we used the trace-preserving property of A.
Now let’s look at the unitary case:

uut =3 U LG UTU RKHUT @ i) 1k = DU ik UT @ |iXl] = dim(#2)U # I

ijkl il

Exercise B.4: Tedious equivalence between representations of the process tensor

Show that (note that in the book some " are missing)

Latin Greek

Trp {Colli C1lhoCop(0)} = Trs, 15,5450 {Hsg © Yy > Uy D Uffa(zoz’flﬁ”ﬁﬁ W |azah ay agao)(bab bybybo

Latin

is identical to

T[C(rn), -+ ,C(ro)] = Cs1 5, * -+ * Cgy 5, * Tr, {Us Bn,S!

n—1

By_q ¥ ¥ UslBl,S{,BopSOBO}

when we use the Choi representation of the superoperators ¢ <+ U, C <+ C.

Solution:

Given that the first equation is a general representation of the process tensor, and the second is the
representation of the process tensor using the Choi matrices and the link product x*, it is conceptually
straightforward to understand why the latter is found from the former.

To show it concretely, let’s start from the control operations. In the Choi representation

Csy,s, ¥ Cs1,5, * Csp,5, = Csy,5, ® Cs1.5, ® Cg 5

because they do not share any Hilbert space. Then, using the explicit matrix representation,

c”_zc §) ®)ils = 3 Cias la}Bls ® iXils

ijof

we find the second part of the first equation, namely

Latin

Similarly, the link product of the Choi represented unitaries which written explicitely reads

b
Us,m,,558, = O Ullaoao)boBol s, ,)@laoao)boBol s, 5, = D Unspe a1 Xb151] g g, ®laoaoXbobols, g,

corresponds to the first part of the first equality, namely

E E ea,ef1 Ot10607,31,30 @0,B0
ua2a17b2b, a1a0,blb pao bo |a2a1a1a0a0>(b2b1b1b0bo|
Latin Greek

Indeed, since two consecurive unitaries only share one bath Hilbert space, we can use the associative
property to focus on the link product of two consecutive unitaries:

Byy # Agp = Try {(112 ® AT1)(By ® 110)}

UixUg = Trp, { U?;‘f;i”ﬁfui;;";f?g; ((Jar1)(b1B1]) "1 ® |agoo)(bhBol) (Jazaz)(baBe| ® |a'1541><b'151|)}

127




Since the trace only acts on B; we have to calculate
Trp, {(JeaXB1))" @ XBil} = (Bul(JeaXB1)) T |@r) = 85, 5,000
where we used the basis representation of {|a)}. Then, the link product becomes
b b
Uy xUg = Zusi‘;‘ib,?gf glg()l’bgg; |a2a2alla1a6a0><b262b/1b1b650| ;

with the summation carried over the indices appearing in the ketbra. Notice how this link product
removed the Bj space from the ketbra. Indeed, repreating this procedure for U; x Uy * pg one finds that
also the bath By gets traced out. Therefore, tracing out also the final bath Bs one recovers

§ : § : ea,€ef1 Otloéoﬁlﬁo 0,50
L{ asal bab} alao,b1b' pao bo |a2a1a1a0ao>(b2blblb0bo|
Latin Greek

Then, we recognize the link product between the control operations and the unitary evolutions

C(rp) * Trp, {U---Up}.

Exercise B.5: Choi matrix of a quantum Markov process
Derive

T ="Trp, {Us Bp,S! Bp_y Xtk UslBl,sg)BoPsoBU} =~ Trp {UhSsa,UsSsa,ps5(0) ® bf @ i},

n—1

where the swap superoperator is defined through
Ss.4,(ps @Y ) = Ss 4, Z Pab |aa’;a bb0s| = Z Pab |ajaa Db .

Show that the Choi matrix corresponding to a quantum Markov process is isomorphic to E(ty,,tn—1) ®
- ® E(t1,0) ® ps(0), namely a many-body state where correlations only exist between a preparation and its
subsequent measurement, or, alternatively, between an output state S;-_l and an input state Sj.

Solution:
Starting fromthe right hand side, let’s work it out step by step:

e After the first swap and unitary we have
D Pieetho (lageo)bhol) © aoag)boby| © |ayai Xb,b)]
which becomes
> Poofis Unr vo. ’é’%ﬁg a1 Xb1B1] ® [aoag Xbobo| ® |aial Xby b
once we introduce the matrix representation of .

e Applying the second swap we have
> pogoug el |afon )b B @ laoag)bob| @ [aral bib|
e Applying the second unitary we have
N ppeaous e AU S Y (az0)baBa| © |aoahXbobh| © arat Kbibi |
e Taking the trace over the bath ensures as = 3 = € and leaves us with

}: apoy a1 ,bi B4 a0y a1,by B / / / /
14 oS0l U ! |a2a0a0a1a1><b2b0b0b1bl|,

bo Bo %040717' Bo "aze,bae

which coincides (up to reordering of the Hilbert spaces) with the unitary part of Exercise B.4,
where we showed that it corresponds to

Trp, {Ux*---xUp}.
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Using this result we can look at the Choi matrix T for a quantum Markovian process:
T=Trp {unsn e 'Z/{OSOPSB ® ¢+ ®- & ¢+} = Sn,n_lsn 00 '517080/)5 ® ¢+ R Q ¢+

where we used the Markovianity to split the unitary processes into the composition of channels.
Then, since the swap operators make the channels act on the maximally entangled ™ we have

T2psRE,00T® - @Ep 19T,
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C Time-Reversal Symmetry

Exercise C.1: Time-reversal symmetry with even Hamiltonian

Assume that the Hamiltonian obeys the symmetry H(q,p) = H(—q,p), and consider the time-reversal operator
©'(q,p) = (—q,p), and define the reversed dynamics via He/(q,p) = H(q,p).
Show that these transformations also lead to the notion of time-reversal symmetry.

7

Solution:

Let (Go,Po) = ©'(qat, par) = (—qat, par) Their evolution according to the reversed dynamics is

- - 0H . . OH
thZ(Jo-i-dta— , Pdt = Po — dt —
P 1(go,p0) 9 1(go,po)
~ O0H . 0H
Gat = —Qqa¢ +dt o , Dat = par — dt B0
D | (—qas,par) 9 (= qae,par)
- 0 . OH
Jar = —qar + dt o s Pdt = par + dt B0
P (qa¢,Pat) q (qat,pat)
_ 0H . 0H
Gat = —Qqar + dt s , Pdt = par + dt B0
(g0,P0) 4 1(q0,p0)
_ OH . 0H
qar = —qar + dt o s Pt = Pa — dt B0
P 1 (g0,50) 7 1(g0.p0)

by choosing (qat, Pat) = (—qo,po) = ©’(qo,po) we recover the forward Hamilton equation of motion.
Therefore, while (g, p) evolve forward from ¢t = 0 to ¢t = 7, the time-reversed (g, p) evolve backwards from

(¢r,pr) to (qo, po)-

Exercise C.2: Time-reversed master equation

Consider a master equation d;p(t) = Rp(t) described by a time-independent rate matrix R. The solution of the
dynamics is given by the transition matrix e’. Thus, the dynamics is invertible as we can associate to each
final state p(t) a unique initial state p(0) = e~ %p(t).

One could choose the time-reversal operation ® = I and postulate that the time-reversed dynamics obeys the
‘master equation’ d;p(t) = —Rp(t). However, this does not satisfy the requirements of time-reversal symmetry.
What is wrong with the time-reversed master equation?

r

Solution:
The time-reversed master equation leads to

dip(t) = —Rp(t) — p(t + dt) = p(t) — dtRp(2).

Remembering that R is a rate matrix, we know that its spectrum is non-positive: A; < 0. If all A; =0
then nothing happens to the probability distribution and the time-reversal operation is fine. However,
if there exists one eigenvalue A\; < 0, we can use it to generate non-physical states. In fact, calling vy an
eigenvector with Ao = 0 eigenvalue, and v; the eigenvector corresponding to A; < 0, we can choose as
initial state p(0) = vg + a;v;, finding
p(t) = vo + aje Nl

Crucially, —\;¢t > 0, meaning that the state will be dominated by the unphysical v;, which contains
negative entries.

Exercise C.3: Anti-unitarity and anti-linearity

Show that anti-unitarity, i.e. (01|0¢) = (¢|v), imples anti-linearity, i.e. ©i = —iO.

[ Solution: ]
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Using the anti-linearity property we find

(B9[0ig) = —i(¢ly) = =i (OY|O¢) — (OY| (|0i) +i|O¢)) =0, Vi, ¢
Assuming that |©¢) spans the whole Hilbert space, we can then conclude that

Oi = —i06.

Exercise C.4: Trace of time-reversed operator

Show that, given © anti-unitary, Tr {@O@fl} =Tr {0} =Tr {OT} for any operator O.

Solution:
First of all, notice that © ! is anti-unitary as well. Indeed, by choosing ¥ = ©~'a, 1) = O3 we have

(09]0¢) = (a|B) = (¢|y) = (671810 ).
Moving on to the trace we have

Tr {0007 '} =Y (k00O '|k).
k

Introducing two identity decompositions before and after the operator O and writing |k) = © |l) we find

{0061} = Y (@1l6i) (il0l7) (jle 1t = 3 (i) (ilotli) = 3 (i0]i) = Tr {0} .

il ij )

Exercise C.5: Spectrum of time-reversed observable

Show for any observable O that the time-reversed observable ©0©~! is also an observable, i.e. it is Hermitian.
Show for any observable O that ©0O~! has the same spectrum as O.

Solution:
Since O is hermitian we denote with [t} its eigenvectors with eigenvalues Ay € R. Calling |¢x) = © |1)x),
we have

©00 ™" |pr) = OO0 [1hr) = ON |1hr) = Xi© [ty

which means that |¢y) is eigenvector of @001 with eigenvalues A\, € R. This also means that O and
©006~! have the same spectrum.

Exercise C.6: Real matrix representation of the Hamiltonian

Show that any Hamiltonian that obeys [©, H] = 0 for an anti-unitary operator © with ©2 = I can be given a
real matrix representation without knowing the eigenbasis.

Solution:
Notice that the commutation relation allows us to write

(0il0H ) = (j|H|i) = (©i|H|Oj)
Therefore, the eigenvectors satisty |©i) = |i) we have
(i H|j) = (i H]i)
which means that all elements of H in the given basis are real numbers.

Therefore, we need to construct such a basis.
Take any vector [¢). The (non-normalized) vector |¢) = ) + O [¢b) satisfies

O1¢) = ¢)

thanks to ©2 =1.
Now, we can provide a protocol to generate a © invariant basis:
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e Take a vector |0) and construct |q~50)~: 0) 4+ ©0). If |¢) = 0, meaning that ©[0) = — |0), take
instead the state i |0), which yields |¢o) = i]0) —i© |0) = 2i|0) # 0.

° N~ormalize the vector |¢o) = \/%, which is always possible because we excluded the case
|¢0) = 0 in the previous step.
e Choose a new vector |1) and make it orthogonal to |¢o):
1) = N (11) — {(¢ol1) |¢0))
with IV normalization constant.
e Construct |¢;) # 0 as done in the first step. Notice that
(bold1) = (dol1) + (Bo|O1) = (¢ol1) + (1]¢po) = 0

by construction, meaning that the newly constructed normalized vector |¢;) is already orthogonal

to |¢o).
e Keep going until the set {|¢;)} spans the entire Hilbert space.

Exercise C.7: Time-reversal and local detailed balance

Consider first two observables X = 3 2Il(z) and Y =} yII(y) and their time-reversal 0xXe =% allg(x)
and QYO ! = >, Ylle(y). Show the validity of the following identity:

T {T1(y)U (£, 0)II(z)U (£,0)} = Tr {H@(a:)U@(t, 0)Ie (y) U (¢, 0)} .

The rate to jump from a coarse-grained state =’ to x under the assumption of time-scale separation reads

1 1
Ry o = gﬁﬁ {I(E, 2)U(st)IL(E, 2" )UT(5t) }
with Vg ,» = Tr {II(E, 2’)}. We now consider the time-reversed process. The rate to jump from a time-reversed
coarse-grained state xg to z under the assumption of time-scale separation becomes

1 1
RS oo = 57 {H@(E,x/)U@(st)H@(E,x)Ug(&)} .

Note that the number of microstates remains unchanged by the time-reversal operator: Vg ;o = Tr {@H(E , x)@_l} =
Tr {II(E,z)} = Vg,.

Show that
R:z:,z’ o VE,J:
5 =
RI297$(7) VE,,T/
Solution:

Starting from the trace we get
Tr {IL,UTLUT} =Y (k|0 'Te yUslle . ULOIK) = > (k|©7i) (illle yUslle - Ub|5) (j|Ok) .
k ijk
Using |k) = |©711) the trace becomes
> (07107%4) (illle yUsllo . USl1) = 3 (il3) (iIUele,,UsTlo 4 i) = Tr {Tle zUsllo,, U }
ij ij
as desired.
By applying the result just proven we find

Rx,z’ _ VE,a:
5 =
R‘T,eaﬂ:e VE’II

immediately.
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